How to program simple cellular automata with Freebasic

Cellular Autmata (CA) are great fun and they can look quite cool, and the best is, they're easy to make.

So what actually are CA? You may have heard of Cornwell's Game Of Life, it is the most popular CA. A CA is a discrete model, consisting of cells structured in a grid, which can be in any natural number of dimensions. these cells do have states, which are determined by a bunch of other cells, they are called the neighbourhood of this cell. The time t is also discret, and the neighbourhood determines a cell in t-1. Sounds confusing to you? I guess so, therefore we look an example.

The most simple CA are 1-Dimensional and have two states, 1 or 0, black/white, gay/straight, female/straight, whatever you want. Their neighbourhood consists of 3 cells, the cell itself, and the cells to the immedate left and right:

fig 1: The neighbourhood: the cells to the left and right are in the state black,

the cell itself has the state white. (at time t-1)

Now we can define the function which defines the state of our cell at time t.

As we have 3 neighbours, and every one can have two states, there are 2^3 (8) possible patterns.

Possible patterns = number of states^number of neighbors

here they are:

Now we have to map each of these patterns to a state.

For example:

Now this is called the rule of the CA. In terms it means, make the cell white if all the neighbours are white, make the cell black if only the left neighbour is black, make it white if only the middle cell is black, and so on.

For our CA there are 2^8 (256) possble rules. To calculate the number of rules for a CA we use:

number of possible rules = number of states ^ number of patterns

That's basically all of the theory for now. Let's make a freebasic app.

We want to draw the cells as pixels, therefore we have to set up a grafic mode. This is done by usung the SCREEN command. For having the most cells, I set mode to 21, but you can take whatever you like.

SCREEN 21

As the number of cells in our grid we take the number of horicontal pixels that our screen mode provides. To Get this number use:

SCREENINFO number_of_cells, number_of_generations

We now set up two 1-dimensional arrays, one for saving the states in time t-1, and one for t.

DIM AS UBYTE grid_at_t1(-1 TO number_of_cells+1), grid_at_t(-1 TO number_of_cells+1)

Yout might wonder why our array has to more indexes as our screen pixels has. This is because, if we want to give the first cell a new state, we can't really do so because it doesn't have a left neighbour, accordingly, the most right cell doesn't have a right member. Therefore we will later copy the state of the last cell to -1 and the state of the first cell to number_of_cells+1. This makes the topology of our CA a cylinder.

We now set the rule for our CA:

DIM AS UBYTE rulenumber 'a unsigned byte goes from 0 TO 255, x-actly what we need

The Rule is the Binary Representation of the rulenumber. We want to have it as a string.

DIM AS STRING RULE

Rule = Str$(Bin$(rulenumber) 'the BIN$()-Function takes an integer and returns it as a binary

 'number. The Str$()-Function converts the binary number to a string.

Now we make a FOR-loop that makes generations, a new one for every vertical line of pixel until we reach the bottom of our screen.

FOR i = 0 TO number_of_generations

grid_at_t1(-1) = grid_at_t1(number_of cells) 'making the topology of cylinder

grid_at_t1(number_of cells + 1) = grid_at_t1(0) 'making the topology of cylinder

FOR j = 0 TO number_of cells 'now we look at each cell of the generation at time t

'first we define a local string variable

DIM AS UBYTE Pattern

Pattern = 1+(grid_at_t1(j-1)*2^2) + (grid_at_t1(j)*2^1) + (grid_at_t1(j+1)*2^0)

'every pattern can be seen as a 3 digit binary number, we convert this to a decimal number.

' this decimal number gives us binary place to look for in the rule-number:

grid_at_t(j)= valint(MID$(Rule, INT(Pattern), 1))

'according to this we draw the actual cell to the screen:

PSET (j,i), grid_at_t(j)

 NEXT j 'continue with the next cell

 'once we're finished with a generation, we make t become t-1

FOR k = 0 TO number_of_cells

grid_at_t1(k) = grid_at_t(k)

NEXT k

NEXT i

Compile and start!

