Mentat’s Wire frame Tutorial

So what is a wire frame?

Simply put, it’s a physical model of an object. The vertices are the corners and the edges are lines. In programming, whatever effects are enacted upon a primitive, or unions of primitives, the events transpired are that of the object it models.

In English, a wire frame object acts like the object.

So why is it important?

Modern 3D games (I know, it’s a bit redundant) use filled-in wire frames called polygons. More polygons = better graphics +more processor requirements.

Again, why the importance?

1) Computers favor wire fames over ray casting in terms of speed. The former is faster and has high definition. It can also portray 3D curves better.

2) Easier for physics engines. All the work is focused on just points. So, less work is required per unit, which means better performance.

3) Easy to work with once you get the gist. You’re just handling 3D points and connecting lines between them.

4) Looks modern but works on old computers just as well as ray casting, although at low resolutions, ray casting has some advantages over wire frames.

Get my point? Now to be fair, I was being hard on ray casting, which has some advantages over wire framing such as shadow casting and image mirroring.

Now for the Star of 3d programming:

PX = VX/VZ

PY = VY/VZ

VX = 3D X coordinate

VY = 3D Y coordinate

VZ = 3D Z coordinate

PX = apparent screen X coordinate

PY = apparent screen Y coordinate

Uhh… What?

For those who don’t get this:

Alright, get your 3D coordinates (x,y,z). Divide your x by your z. That’s your horizontal coordinate on your screen. Divide your y by your z. That’s your vertical coordinate. Plot (horizontal, vertical) on the screen. Whee!

If you don’t get this, then read it over.

It may not seem much, but this is THE underlying principle of wire frames and 3D graphics.

So what? I ran it and I didn’t see any wires.

If you asked this then go back to “Hello world”.

Alright. Do you see it. Take a moment and think. Do you see the foundation for modern 3d graphics?

Ok, for those of you who don’t then look:

Let’s call my previous 3d function ThreeDee(x,y,z) (I actually don’t know how to do real functions in QB, so this is just for argument). If you run this, make sure to add values or you’ll get an error (divide by zero).

‘--

QB: VOXE

START:

SCREEN 12

LET OX=320

‘OFFSETS MIDDLE OF SCREEN

LET OY=240

CLS

‘ALWAYS START WITH THIS

LET A=NUMBER OF POINTS
‘PSUEDOCODE

DIM VX(A)
‘THESE ARE ALL X COORDINATES. I’M NOT USING

DIM VY(A)
‘TYPE DEF BECAUSE ARRAYS ARE EASIER TO USE

DIM VZ(A)
‘FOR MANY POINTS. YOU COULD USE A SINGLE

MAIN:

FOR D=1 TO A

‘ARRAY INSTEAD OF THREE

LET VZ(D)=SOMETHING

‘PSUEDO

LET VY(D)=SOMETHING

‘PSUEDO

LET VX(D)=SOMETHING ‘MORE PSUEDO

THREEDEE(VX(D),VY(D),VZ(D))

NEXT D

FOR D = 1 TO (A-1)

‘MAKES WIRE FRAME

LINE (PX(D),PY(D)) – (PX(D+1),PY(D+1))

NEXT D

LINE (PX(A),PY(A)) – (PX(1),PY(1))

‘MAKES THAT LAST LINE

STOP

THREEDEE(VX(D),VY(D),VZ(D))

‘OUR MAGIC

LET PX(D)=OX+ (VX(D)-OX)/VZ(D) ‘OX AND OY ARE VANISHING POINTS

LET PY(D)=OY+ (VY(D)-OY)/VZ(D)

RETURN

‘--

This is the basis of wire framing. Now, you can maybe fill in sides.

Think of a maze. You can use ray casting and suffer from flickering and horrible resolution, or you can make a wire frame and fill it in. Wire framing has the correct perspectives down to a distance of above 0, is much faster, and has a higher resolution.

So, how can one rotate and do manipulations of the vertices?

Well, there are a couple of ways. You can rotate using the addition of sines/cosiness or you can add the derivatives, or you can follow a model path. The easiest is sines/cosines rotation. Model paths are better and have more possibilities but require an initial condition to compare to. Derivative addition is hard and least known (I made it up), is not the most accurate, but is purely relative to the object, and so can change its direction in an instant without the programmer inputting previous specific directions for whatever condition happened. Since this is getting into physics engines, and this tutorial is about wire framing, I’ll refrain to simple rotation, which RelSoft’s rotation tutorials immensely helped me.

Basically, the rotation of P(X,Y) around P(OX,OY) at angle A is:

LET X=OX+(X-OX)*COS(A) – (Y-OY)*SIN(A)

LET Y=OY+(Y-OY)*COS(A)+(X-OX)*SIN(A)

Again, my thanks to RelSoft for these equations.

Now, do you see the implication of these equations. Think for a second. Why would you need rotations for a wire frame if you can just plot along a model function of a circle. Well, look at the fact that the equation is +/– SQR(R^2–X^2). That is “plus or minus the square root of r squared minus x squared”.

A) If the situational positive sign switches to a minus sign, you get an error unless you use if…then.

B) X cannot exceed R

C) This is actually two hemispheres. So you don’t go all the way around but instead you get imaginaries at the horizontal axis. And your computer hates imaginaries.

D) You can fix it so it can work, but it’s slow. Might as well ray cast.

Get my point? Moving along.

So here’s a rotating cube program.

To do something, press one of the buttons on the right half of the keyboard.

DO

 KEY$ = INKEY$

 IF KEY$ = "I" THEN GOSUB INFO

 LOOP WHILE KEY$ = ""

 SCREEN 12

 CLS

 DIM PX(8) 'SCREEN X COORDINATES

 DIM PY(8) 'SCREEN Y COORDINATES

 DIM VX(8) 'X COORDINATES

 DIM VY(8) 'Y COORDINATES

 DIM VZ(8) 'Z COORDINATES

 LET SCALE = 100

 LET OX = 320 'OFFSETS, COORDINATES OF THE CENTER OF REVOLUTION

 LET OY = 240

 LET OZ = 1.1

 LET X1 = 270

 LET X2 = 370 'DEFAULT COORDINATES

 LET Y1 = 190 'I HAD THESE SETUP BECAUSE OF EASE OF EDITING

 LET Y2 = 290

 LET Z1 = 1

 LET Z2 = 2

 LET VX(1) = X1

 LET VX(4) = X1

 LET VX(5) = X1

 LET VX(8) = X1

 LET VX(2) = X2

 LET VX(3) = X2

 LET VX(6) = X2

 LET VX(7) = X2

 LET VY(1) = Y1

 LET VY(2) = Y1

 LET VY(5) = Y1

 LET VY(6) = Y1

 LET VY(3) = Y2

 LET VY(4) = Y2

 LET VY(7) = Y2

 LET VY(8) = Y2

 FOR I = 1 TO 4 'I HAD TO CHEAT

 LET VZ(I) = Z1

 NEXT I

 FOR I = 5 TO 8

 LET VZ(I) = Z2

 NEXT I

MAIN:

 DO

 COLOR 14

 PSET (320, 240) 'CENTER DOT

 PSET (320, 239)

 PSET (321, 240)

 PSET (320, 241)

 PSET (319, 240)

 COLOR 15

 DO

 LET KEY$ = INKEY$

 LOOP WHILE KEY$ = ""

 SELECT CASE KEY$

 CASE "2" 'ROTATE YZ AXIS FRONTWARD

 FOR I = 1 TO 8

 LET VZ(I) = OZ + (VZ(I) - OZ) * COS(-.01) - ((VY(I) - OY) / 100) * SIN(-.01)

 LET VY(I) = OY + (VY(I) - OY) * COS(-.01) + 100 * (VZ(I) - OZ) * SIN(-.01)

 NEXT I

 CASE "6" 'ROTATE XZ AXIS

 FOR I = 1 TO 8

 LET VX(I) = OX + (VX(I) - OX) * COS(.01) - 100 * (VZ(I) - OZ) * SIN(.01)

 LET VZ(I) = OZ + (VZ(I) - OZ) * COS(.01) + ((VX(I) - OX) / 100) * SIN(.01)

 NEXT I

 CASE "4" 'ROTATE XZ AXIS

 FOR I = 1 TO 8

 LET VX(I) = OX + (VX(I) - OX) * COS(-.01) - 100 * (VZ(I) - OZ) * SIN(-.01)

 LET VZ(I) = OZ + (VZ(I) - OZ) * COS(-.01) + ((VX(I) - OX) / 100) * SIN(-.01)

 NEXT I

 CASE "8" 'ROTATE YZ AXIS BACKWARDS

 FOR I = 1 TO 8

 LET VZ(I) = OZ + (VZ(I) - OZ) * COS(.01) - (100 / (VY(I) - OY)) * SIN(.01)

 LET VY(I) = OY + (VY(I) - OY) * COS(.01) + 100 * (VZ(I) - OZ) * SIN(.01)

 NEXT I

 CASE "." 'ROTATE XY AXIS COUNTER CLOCK WISE

 FOR I = 1 TO 8

 LET VX(I) = 320 + (VX(I) - 320) * COS(.01) - (VY(I) - 240) * SIN(.01)

 LET VY(I) = 240 + (VY(I) - 240) * COS(.01) + (VX(I) - 320) * SIN(.01)

 NEXT I

 CASE "," 'ROTATE XY AXIS CLOCK WISE

 FOR I = 1 TO 8

 LET VX(I) = 320 + (VX(I) - 320) * COS(-.01) - (VY(I) - 240) * SIN(-.01)

 LET VY(I) = 240 + (VY(I) - 240) * COS(-.01) + (VX(I) - 320) * SIN(-.01)

 NEXT I

 CASE CHR$(0) + CHR$(72) 'MOVE UP

 FOR I = 1 TO 8

 LET VY(I) = VY(I) - 1

 NEXT I

 CASE CHR$(0) + CHR$(80) 'MOVE DOWN

 FOR I = 1 TO 8

 LET VY(I) = VY(I) + 1

 NEXT I

 CASE CHR$(0) + CHR$(75) 'MOVE LEFT

 FOR I = 1 TO 8

 LET VX(I) = VX(I) - 1

 NEXT I

 CASE CHR$(0) + CHR$(77) 'MOVE RIGHT

 FOR I = 1 TO 8

 LET VX(I) = VX(I) + 1

 NEXT I

 CASE "+" 'DECREASE SCALE, ZOOM IN

 LET SCALE = SCALE - .1

 CASE "-" 'INCREASE SCALE, ZOOM OUT

 LET SCALE = SCALE + .1

 CASE "/" 'DECREASES Z

 FOR I = 1 TO 8

 LET VZ(I) = VZ(I) - .02

 NEXT I

 CASE "*" 'INCREASES Z

 FOR I = 1 TO 8

 LET VZ(I) = VZ(I) + .02

 NEXT I

 CASE "R" 'RESTARTS

 GOTO START

 CASE "r"

 GOTO START

 END SELECT

 FOR I = 1 TO 8

 IF VZ(I) <> 0 THEN

 LET PX(I) = 320 + (SCALE * (VX(I) - 320)) / VZ(I)

 LET PY(I) = 240 + (SCALE * (VY(I) - 240)) / VZ(I)

 END IF

 NEXT I

 CLS

 LINE (PX(1), PY(1))-(PX(2), PY(2)) 'FRONT LINES

 LINE (PX(2), PY(2))-(PX(3), PY(3))

 LINE (PX(3), PY(3))-(PX(4), PY(4))

 LINE (PX(4), PY(4))-(PX(1), PY(1))

 LINE (PX(1), PY(1))-(PX(5), PY(5)) 'SIDE LINES

 LINE (PX(2), PY(2))-(PX(6), PY(6))

 LINE (PX(3), PY(3))-(PX(7), PY(7))

 LINE (PX(4), PY(4))-(PX(8), PY(8))

 LINE (PX(5), PY(5))-(PX(6), PY(6)) 'BACK LINES

 LINE (PX(6), PY(6))-(PX(7), PY(7))

 LINE (PX(7), PY(7))-(PX(8), PY(8))

 LINE (PX(8), PY(8))-(PX(5), PY(5))

 LOOP UNTIL KEY$ = "Q" OR KEY$ = "q"

 STOP

As in my other tutorial (soon to be plural!), please feel free to copy, but if you do, please me credit.

