Mentat

Functions And Local Variables

A function is a subroutine that gives back a value. Of course, they must be declared. Also, it is a good idea to pass numbers into a subroutine via arguments. They are also very useful for modularity and using local variables rather than global.

Keep in mind, this tutorial is about clarifying a subject and teaching it. This is not about the newest theory on how to construct neural paths for AI, or how to detect collisions in 5-dimensional space. This is text-book material, and neither particularly inspirational nor exciting.

The first thing to do is to do is initialize the function. Let’s have a function that divides a sum of numbers by a number. It requires three arguments, and returns one number.

If you want to copy, start below here:

'A SIMPLE FUNCTION PROGRAM---

OPTION EXPLICIT

OPTION BYVAL

DECLARE FUNCTION GET_USER_INPUT OVERLOAD(AS SHORT) AS SHORT

DECLARE FUNCTION SUM_DIVIDE(A AS DOUBLE, B AS DOUBLE, C AS DOUBLE)AS DOUBLE

DECLARE FUNCTION GET_USER_INPUT() AS DOUBLE

DECLARE FUNCTION GO_AGAIN() AS DOUBLE

DECLARE SUB DISP_ANSWER(ANSWER AS DOUBLE)

DIM ANS AS DOUBLE

DIM LIST(3) AS DOUBLE

DIM TRY_AGAIN AS SHORT

DIM A_NUMBER AS SHORT

DO

 FOR A_NUMBER = 1 TO 3

 LET LIST(A_NUMBER) = GET_USER_INPUT()

 NEXT A_NUMBER

 LET ANS = SUM_DIVIDE(LIST(1), LIST(2), LIST(3))

 CALL DISP_ANSWER(ANS)

 LET TRY_AGAIN = GO_AGAIN()

LOOP WHILE TRY_AGAIN

STOP

'FUNCTIONS--

FUNCTION SUM_DIVIDE(A AS DOUBLE,B AS DOUBLE,C AS DOUBLE)AS DOUBLE

PRINT ""

 IF C<>0 THEN RETURN (A+B)/(C)

 PRINT ""

 PRINT "Error in the divisor!"

 BEEP

RETURN 0

END FUNCTION

FUNCTION GET_USER_INPUT() AS DOUBLE

 DIM A_NUMBER AS DOUBLE

 INPUT "Please enter a number: ", A_NUMBER

 RETURN A_NUMBER

END FUNCTION

FUNCTION GET_USER_INPUT(USELESS AS SHORT) AS SHORT

 RETURN 42

END FUNCTION

FUNCTION GO_AGAIN() AS DOUBLE

 DIM TRY_AGAIN AS STRING

 PRINT ""

 INPUT "Do you want to try again? ", TRY_AGAIN

 LET TRY_AGAIN = UCASE(TRY_AGAIN)

 IF TRY_AGAIN = "YES" OR TRY_AGAIN = "Y" THEN RETURN 1

 IF TRY_AGAIN = "NO" OR TRY_AGAIN = "N" THEN RETURN 0

 PRINT "Bad input!"

 BEEP

 RETURN GO_AGAIN()

END FUNCTION

'SUBROUTINES--

SUB DISP_ANSWER(ANSWER AS DOUBLE)

 PRINT "Your answer is ",ANSWER

END SUB

‘END OF PROGRAM---

Stop copying. If you don’t, you just might get an error in you’re compiler if it permits pasting.

I doubt it will work in QB; most likely because I’m passing functions without parameters. For those of you with only QB, pretend that this program is running. It’s FB tested, and although it’s practically unpractical, not to mention rather inefficient, it serves as an educational tool.

To start off explaining the program, and elucidate you on functions, I’ll start from the top, and work all of my way down.

First thing is the top two commands. OPTION EXPLICIT and OPTION BYVAL. OPTION EXPLICIT is an excellent debugging tool. It tells the compiler to flag an error if it sees an uninitialized variable. It’s to protect against typos. It actually helped me when I wrote the code. I originally put FOR A_NUMBER = 1 TO 3 … NEXT A. Actually, it was supposed to be NEXT A_NUMBER. Yes, it’s extra work to initialize variables without using them, but it protects from typo bugs, and initializing variables is a good habit.

OPTION BYVAL tells the compiler to accept values, rather than references. I don’t know much about it, other than it solved an old bug I had.

The next command is my declaration of the function SUM_DIVIDE. Due to lack of space and word-wrap, the last double moved to the next line. So for those who already copied and attempted to run the program, you might get an error if you didn’t notice this. Just move it back. The other functions and subroutines also were declared with the format of DECLARE <FUNCTION|SUB> <NAME>(PARAMETER_ONE AS DOUBLE, PARAMETER_TWO AS SINGLE, PARAMETER_THREE AS STRING, … , PARAMETER_N AS SHORT) AS LONG. In order, declare the function’s name, the parameters with each type, and top it off with the type of the return value. You may not even need parameters, but remember to include the empty parenthesis. Such as FUNCTION GO_AGAIN().

Next is dimensioning the main variables themselves. Notice that I did NOT use common shared. Which means that no function is messing with any variables that it shouldn’t mess with. Global variables are evil. Repeat, global variables are evil. Just like GOTO. Use them only when local variables can’t do something well. But then again, that’s what pointers are for.

Now for the main body. The DO loop. The first thing in the main loop is the FOR loop. It runs three times, to get user input three times. GET_USER_INPUT() does what its names says; it gets the user’s input. And the FOR loop stores it to an array.

The next thing that is done is loading the list into the function SUM_DIVIDE and then storing the answer to the variable ANS. Then the variable is displayed and the user is asked if he or she wants to try again.

 For those of you who are new to programming and/or Boolean logic, you might have noticed what I did to end the WHILE loop. I put WHILE TRY_AGAIN. This is not a typo. I don’t have to put WHILE TRY_AGAIN = 1. The computer assumes that as long as TRY_AGAIN is not zero, it is true.

Onward, to the homeland of functions and subroutines. First on the line, the almighty Function FUNCTION SUM_DIVIDE itself. Here’s the purpose of the program. It doesn’t matter where you put it. Okay, there are limits. But why on earth would anybody declare it in a FOR loop? It will still take its arguments and spit out a brand new number, if it’s properly declared and there aren’t any bugs or typos.

I’ll let you figure out the other functions. You might have noticed that I put the same function GET_USER_INPUT twice, with different parameters. The second function with the extra parameter that just returns 42 (why not?) is called an overloaded function. It’s a neat trick, though useless in my program. The overloaded function (which must go before the original) has a different set of arguments. The reason for this is that sometimes you might want to put these numbers in a function (ex: all double), and other times you want to input strings. And you want it under the same name, but different ways to process the numbers due to different natures of the numbers. You don’t have to do this, but it looks cool and has practical applications.

Oh, and subroutines can also take parameters. It keeps the variables local, but “transports” them through arguments and returns (for functions, subs don’t return anything).

Here’s an instance for using functions and subs. Use a subroutine that takes six parameters – the x and y coordinates for a triangle – and print them. Use a function to move the vertices.

That’s all I have to say about functions. So if you see F(x) = x² + 4x + 5, you know that you can plug it to the computer.

If you have any comments or questions, open your compiler and press F1. If you have any further comments or questions, about this tutorial, please find a way to ask me.

Hopefully, I can answer any questions. Thank you for giving my tutorial some interest.

