By Mentat

February 10, 2008

Going Deep: Football and 3d Graphics

The Once Upon A Time:
Today’s a practice game and you’re a quarterback for your high school football team. Your receivers are all trying to shake off the other team. Yet you have a hard time seeing them because the opposing team is in the way. So you sort out the players and throw the ball to a relatively open player (on your team of course).

After practice you go home, get on your computer, and stare at the screen trying work on your 3d computer game. You’re stumped on how to draw things closer to you over things farther away. Well, at a decent speed at any rate. Do you sort? It seems the only option. Or you could just use OpenGL or something like that. But then I wouldn’t have a plot to tell, and besides, your too stubborn. Sorting 3d objects is time consuming, and is difficult for complex objects. What if one part of the object is in front of another but the other half is behind!?

Since you have yet to bathe, and you stink to the high heavens, you go and take a shower. A good long shower. Both the football game and your own program runs through your mind. The receiver isn’t shown in front of the safety. It’s so intuitive! Yet no matter how hard you try, you can’t seem to perfect your own graphics. It’s so easy for you to sort out distance and ‘draw’ images in the correct order in your mind. Why can’t the computer? Of course you know that the computer draws pixels to the screen, while in reality oodles of photons bounce off the oodles of atoms. Back to sorting. Sort by triangles? Even more work and time to do something so obvious. What about breaking the triangles into smaller parts…uh…no. Hm.

The hot water is running out and you’re becoming quite frantic. Wait a minute…what about breaking the triangles into pixels! And then load the pixels and their corresponding depths into a buffer. By the Greek Gods, it just might work!

The Point

So what’s the point of this tutorial? A method of not drawing stuff in the back over stuff in the front. Basically, I’m going to use a big array to store the depths of individual pixels. So lets say I want to draw a triangle. With a couple nested loops, I can iterate through all points of the triangle and draw each pixel if it’s depth is less than the pixel-depth of the array. For example, I’ll convert point (Vx,Vy,Vz) to a pixel coordinate (Px,Py), then I’ll check Vz to the number at the array location (Px,Py), and if Vz is less than the previous depth, I’ll draw (Px,Py) and then store Vz to the array. The depth array is pretty much like a screen you don’t see, and it holds the depth of each point.

For me, this means a little extra work regarding points. I normally draw 3d triangles with the built in LINE(#,#)-(#,#) command. Now we need to draw each individual pixel. Not to worry, I’ve got the math.

The Foundation

First thing is first. Before I get into the actual math, I’ll have to establish some standards and I’ll have to say this: the code isn’t optimized. Feel free to copy and paste, but I’d rather you read and use your own interpretation, so you have a better understanding. Depth testing can be used in conjunction with other buffers or arrays. And there are different ways to use this, and to draw.

Another thing is that I’ve used the term array and buffer loosely. From now on, by buffer I mean a chunk of memory used by the command ALLOCATE(#). An array is…well an array. For simplicity, I’ll use an array.

And now for the conventions. I’ll use f<name> to indicate a function or a subroutine. fPixel draws the pixel and depth tests. a<name> is an array. aDepth is the depth array. I use i, j, c, and r in FOR loops. FOR i=1 to 7. The suffixes x and y are generally coordinates, the prefix p means pixel, and v means 3d vertex. And pay attention to capitalization. If I write aHat, I mean for an array to be called hat, while I mean Abbot to be a simple variable. But hopefully you’ll see what I mean.

Now for the good stuff. First, let’s set up the screen and buffer. This is in FreeBASIC, by the way.

The Frame

‘--

‘***

'Depth Demo

‘set up the screen

CLS

SCREEN 18

'resets the depth array

DECLARE SUB ResetDepth

'Declare the variables

DIM SHARED Pi AS SINGLE

DIM SHARED Wdth AS INTEGER

DIM SHARED Height AS INTEGER

DIM SHARED OffsetX AS SINGLE

DIM SHARED OffsetY AS SINGLE

DIM SHARED ScaleX AS SINGLE

DIM SHARED ScaleY AS SINGLE

DIM SHARED MaxDepth AS USHORT

'Loop variables

DIM SHARED r AS SHORT

DIM SHARED c AS SHORT

DIM SHARED i AS SINGLE

DIM SHARED j AS SINGLE

'3.14159265358979323...

Pi = ATN(1) * 4

'screen dimensions

SCREENINFO Wdth, Height

‘set to the same dimensions of the screen

DIM SHARED aDepth(0 TO Wdth - 1, 0 TO Height - 1) AS SINGLE

'middle of the screen

OffsetX = Wdth / 2

OffsetY = Height / 2

'depth scale

ScaleX = Wdth / TAN(90 * 180 / Pi)

ScaleY = Height / TAN(90 * 180 / Pi)

'maximum depth

MaxDepth = 65365

'Load up the depth array, otherwise nothing can be drawn to it.

fResetDepth

SUB fResetDepth

 FOR r = 0 TO Height-1

 FOR c = 0 TO Wdth-1

 aDepth(c, r) = MaxDepth

 NEXT c

 NEXT r

END SUB

‘***

‘--

The Hypocrisy

If you’ve read my previous tutorial, then you may be wondering why I made so many global variables. This is a demo, and I want it to be small and simple as possible. Actually, I would just put them into a global UDT and make them private. Again, this code isn’t made for an actual game or large program.

Now look at that last ‘paragraph’ in the code. If you’re just as absent minded as I, you may have forgotten to set a ‘back’ to the array. Otherwise the depth for every pixel is 0. And that’s just not good. Also pay attention to aDepth(#,#). I had to make sure it is aligned with each screen pixel.

The Almighty Dot

Onward to making our beautiful pixels. This is a subroutine which will host the depth testing. The wonderful thing about our pixel function is that extra things can be added. Pixels alone may not seem much, but they’ll be the base for drawing lines (we shouldn’t use the built in LINE(#,#)-(#,#) command), and then triangles.

‘--

‘***

SUB fPixel(Px AS SINGLE, Py AS SINGLE, Vz AS SINGLE)

IF Px >= 0 AND Px <= Wdth - 1 AND Py >= 0 AND Py <= Height - 1 THEN

IF Vz <= aDepth(Px, Py) AND Vz>=1 THEN

PSET (Px, Py)

aDepth (Px, Py) = Vz

END IF

END IF

END SUB

‘***

‘--

The Conversion

Of course, we’ll need to convert the vertex to a screen pixel before we plug in this sub. I didn’t add anything for color, partially because the FB compiler would black out the screen. Also, there are all kinds of things you can do with colors. You can add fog, blur, fade, etc. If I went in all of that then I wouldn’t be able to finish. With a modified array/buffer, you can add transparency, lighting (I think), and more special effects. There’s a lot of stuff you can do to a pixel.

Now about the this specific sub. First we check to make sure the pixel is on the screen, and therefore on the array. If so, then check for the depth of the pixel, and if so, PSETify it and put in a new value for the array. Simple, right? Just say yes. Finding the pixel on a triangle will be messy. I originally only used a single sub, and I had point-point equations all over the place. Functions can incur an overhead, but they do a good job at simplifying code. I’ve tested the code so, and it does work, albeit slowly.

After this, we need a function to convert a 3d vertex to a screen pixel. I’m assuming you know how to convert 3d vertices to 2d pixels. Otherwise this isn’t the best tutorial for you.

‘--

‘***

FUNCTION fGetX (Vx AS SINGLE, Vz AS SINGLE) AS SINGLE

RETURN OffsetX + (Vx – OffsetX) * ScaleX / Vz

END FUNCTION

FUNCTION fGetY (Vy AS SINGLE, Vz AS SINGLE) AS SINGLE

RETURN OffsetY + (Vy – OffsetY) * ScaleY / Vz

END FUNCTION

‘***

‘--

The Mathematics

Now for lines. Don’t be fooled; lines aren’t as simple as they look. If the absolute value of the slope is greater than one, then there are more pixels per x than there are per y. So if we drew this type of line by iterating x, it will be spotty and incomplete. But if we iterate with x for a slope of less than 1 then it will fill out quite nicely. So if ABS(Slope)>1 THEN ITERATE Y ELSE ITERATE X. If you don’t know what I’m talking about, you will. Normally, we are taught Y=MX+B, but there’s nothing stopping us from using X=MY+B.

Goody, now for some good ol’ algebra. We have a point (Px1, Py1) and point (Px2, Py2), and we want to find a point on a line made by them, which I’ll call (Px?, Py?). First, let’s get an equation from the first two. As you probably know, M = (Py2 – Py1) / (Px2 – Px1). If you like, you can use an alternate : (Py2 – Py1) / (Px2 – Px1) = -(Py1 – Py2) / (Px2 – Px1) = --(Py1 – Py2) / (Px1 – Px2) = (Py1 – Py2) / (Px1 – Px2) = M. 1-2 or 2-1, it doesn’t matter, just make sure the numerator and denominator match. I prefer the latter. And make sure Px1 <> Px2.

So now we have Y = B + X*(Py1 – Py2) / (Px1 – Px2). Now to solve for B, simple enough. Plug and chug a point. Py1 = B + Px1*(Py1 – Py2) / (Px1 – Px2). Py1 - Px1*(Py1 – Py2) / (Px1 – Px2) = B. Now plug back in to the original equation:

Y = Py1 - Px1*(Py1 – Py2) / (Px1 – Px2) + X*(Py1 – Py2) / (Px1 – Px2).

Interestingly enough, we can factor this.

Y = Py1 + (X – Px1)* (Py1 – Py2) / (Px1 – Px2)

In most algebra books, you often see this equation as: Y-Py1 = (Py1 – Py2) / (Px1 – Px2) (X – Px1) or even Y – Py1 = M * (X- Px1). It’s just convention.

And to solve for X if you iterate with Y:

X = Px1 + (Y – Py1)* (Px1 – Px2) / (Py1 – Py2).

Now why did I make you jump through these math hoops when you can look this up in an algebra book? Because (1) We need to tweak it so the computer can understand it, (2) some people understand better when they know the reasoning and how it works, and (3) I wanted to show how flexible this equation is, because we’re going to bend and twist it to find the depth and coordinates of pixels we’re looking for.

The Line

For the line sub, so you can see what I’m talking about. By the way, if you didn’t know this, but you can put the argument of functions on multiple lines if each line (except the last) ends with a _.

‘--

‘***

SUB fLine (Vx1 AS SINGLE, Vy1 AS SINGLE, Vz1 AS SINGLE, _

 Vx2 AS SINGLE, Vy2 AS SINGLE, Vz2 AS SINGLE)

 'Temporary coordinates

 DIM AS SINGLE Vx3

 DIM AS SINGLE Vy3

 DIM AS SINGLE Vz3

 DIM AS SINGLE Px

 DIM AS SINGLE Py

 'if the slope is less than 1, iterate along the x points

 IF ABS(Vx1 - Vx2) > ABS (Vy1 - Vy2) THEN

 FOR Vx3 = Vx1 TO Vx2 STEP ABS(Vx2-Vx1)/(Vx2-Vx1)

 Vy3 = Vy1 + (Vx3 - Vx1)* (Vy1 - Vy2) / (Vx1 - Vx2)

 'Now do you see the versatility of this equation?

 Vz3 = Vz1 + (Vx3 - Vx1)* (Vz1 - Vz2) / (Vx1 - Vx2)

‘lets get the pixel coordinates

 Px = fGetX(Vx3, Vz3)

 Py = fGetY(Vy3, Vz3)

‘Now draw it!

 fPixel(Px, Py, Vz3)

 NEXT I

 ELSE

 FOR Vy3 = Vy1 TO Vy2 STEP ABS(Vy2-Vy1)/(Vy2-Vy1)

 Vx3 = Vx1 + (Vy3 - Vy1)* (Vx1 - Vx2) / (Vy1 - Vy2)

 Vz3 = Vz1 + (Vy3 - Vy1)* (Vz1 - Vz2) / (Vy1 - Vy2)

 Px = fGetX(Vx3, Vz3)

 Py = fGetY(Vy3, Vz3)

 fPixel(Px, Py, Vz3)

 NEXT I

 END IF

END SUB

‘***

‘--

The Humility, and What Came of It

Ugh, I ran it and it was messy when the slope was around 1. But I’m going to use vertical lines for filling in triangles. I don’t know why it’s so messy. It makes you appreciate the existing graphics library. Well, me at least. Remember what I said about blurring? Well, this would be a good reason to use it.

The Valiant Function

Well, I could have put this in earlier but I wanted you to see the

Y = Y1 + (X – X1) * (Y1 – Y2) / (X1 – X2). Well, now to make our lives easier (or not);

‘--

‘***

FUNCTION fPoint (X AS SINGLE, X1 AS SINGLE, X2 AS SINGLE,_

 Y1 AS SINGLE, Y2 AS SINGLE) AS SINGLE

RETURN Y1 + (X – X1) * (Y1 – Y2) / (X1 – X2)

END FUNCTION

‘***

‘--

We’re going to use it again. So the first parameter is the accompanying coordinate you want to find. The second and third is the same coordinate type for the known point. The last two are the same type of coordinates for what you’re trying to find. If it’s too confusing (it certainly is tough for me), then use the original equation.

The Three Sided Triangle

Now for some triangles. The actual point of this tutorial. With depth testing, triangles should be draw correctly and are truncated against the screen if they’re too close. Which means no point-of-infinity and no flipped objects ‘behind’ the eye. In theory. Notice how parameters on multiple lines can make the function look relatively neater. I could fit it on two lines, but what’s an extra line more?

‘--

‘***

SUB fTri (Vx1 AS SINGLE, Vy1 AS SINGLE, Vz1 AS SINGLE,_

 Vx2 AS SINGLE, Vy2 AS SINGLE, Vz2 AS SINGLE,_

 Vx3 AS SINGLE, Vy3 AS SINGLE, Vz3 AS SINGLE)

‘sweeping point

DIM X AS SINGLE

DIM Top AS SINGLE

DIM Bottom AS SINGLE

DIM TopDepth AS SINGLE

DIM BottomDepth AS SINGLE

‘set the points such that X1 < X2 < X3

IF Vx1 > Vx2 THEN

SWAP Vx1, Vx2

SWAP Vy1, Vy2

SWAP Vz1, Vz2

END IF

IF Vx2 > Vx3 THEN

SWAP Vx2, Vx3

SWAP Vy2, Vy3

SWAP Vz2, Vz3

END IF

IF Vx1 > Vx3 THEN

SWAP Vx1, Vx3

SWAP Vy1, Vy3

SWAP Vz1, Vz3

END IF

‘draw left half of the triangle

IF Vx1<>Vx2 THEN

FOR X = Vx1 TO Vx2

Top = fPoint(X, Vx1, Vx2, Vy1, Vy2)

Bottom = fPoint(X, Vx1, Vx3, Vy1, Vy3)

TopDepth = fPoint(X, Vx1, Vx2, Vz1, Vz2)

BottomDepth = fPoint(X, Vx1, Vx3, Vz1, Vz3)

fLine(X,Top,TopDepth, X, Bottom, BottomDepth)

NEXT X

END IF

‘draw right half of the triangle

IF Vx2<>Vx3 THEN

FOR X = Vx2 TO Vx3

Top = fPoint(X, Vx2, Vx3, Vy2, Vy3)

Bottom = fPoint(X, Vx1, Vx3, Vy1, Vy3)

TopDepth = fPoint(X, Vx2, Vx3, Vz2, Vz3)

BottomDepth = fPoint(X, Vx1, Vx3, Vz1, Vz3)

fLine(X,Top,TopDepth, X, Bottom, BottomDepth)

NEXT X

END IF

END SUB

‘***

‘--

The the End

If you’ve tested the code (I’ve been writing and adjusting the whole demo as I write), you’ll notice that the triangles can get quite hollow (though at farther distances they become solid). Nevertheless, I’ve tested it and the pixels that do manage to get drawn work quite well, and that is the point of this tutorial. I did have some code that solved the problem, but it was messier and had its own problems. I had two intersecting triangles and it gave me two crossing triangles, which is good enough. So you, the football player, can now get back to your program.

If you have any questions (or comments) regarding the information I covered, then feel free to ask me at milkmaroo<delThis>@suddenlink.net . Just remember to delete <delThis>; I put it there so I don’t have Spam bots finding me. Chances are that there are errors in this tutorial and in the code (though I did test it). As for my own sources, I used a variant of RelSoft’s way to fill in triangles with two points (originally I anchored a point and swept another, a horrible technique). The idea of using an array for pixels came upon me as I took a shower, though I don’t play on a football team. I’m definitely not the first to figure it out. Thanks to Pete for hosting this tutorial in the QB Express. And of course, my knowledge of FB and QB due to each respective community. Plus whomever I didn’t name.

Post Script: Of Things to Come

I’m hoping for the next tutorial to be based on more rendering. If you have some suggestions on what you want to be illustrated in rendering, then you may ask me via e-mail. Just please keep in mind that I’m still new to 3d rendering.

