Y2K: The Year 2000 Problem

Edward F. Moneo, May 2008
Edited by Stephane Richard
The dust has pretty well settled on the Y2K issue, but I thought I'd write this article to give you programmers some insight into what was going on in the 1990's, and what problems we faced..

THE HYPE:
During the 1990's, there was a tremendous amount of negative press given to the Y2K problem, and the general public as well as computer people, were very concerned. The Y2K problem was considered the biggest single information project the world has ever faced. People were led to believe that in the first minutes of January 1st, 2000, all the computers in the world would go haywire.

THE BUSINESS:
During the years of 1995 to 1999, computer departments were scrambling around trying to find Y2K solutions. Many well-known consulting firms and software houses, then known as Y2K solution providers, quickly put together some general solutions. Due to the hype, the computer departments of companies which could afford it, contracted these solution providers.

These solution providers saw the tremendous opportunity to realize a windfall business. The costs in the USA for Y2K conversion and compliance had been estimated as $300 billion dollars. These outfits not only brought in their software solutions, but also a team of highly paid consultants and programmers. They also brought in tons of "paper tiger" documents to dazzle the customer: Contingency Planning Guide for Year 2000, Remediation/Replacement Contingency Plan Template, Year 2000 Impact Evaluation, Plan 2000 Procedures, and more. None of these documents described how to identify Y2K problems in a program or file, and much less how to correct these problems.

In 1997, I was on the Y2K project for a large international bank, and witnessed the software solutions and performance of the consultants and programmers. The last time I looked, the bank had already spent $60 million dollars. The main consulting firm was the most highly-touted Y2K outfit at the time, and yet their software solutions were inadequate, in my opinion. I personally had to make modifications to expand the Y2K software detection logic. The programmers assigned to the project were very young and extremely inexperienced. They were just "bodies" thrown into the project to generate more consulting fees.

During the above Y2K project for the bank, I was asked to attend a big Y2K conference in Phoenix, Arizona. All the most important Y2K solution providers were there, including:
AIC (Analysts International Corporation)
Andersen Consulting
CACI
Comsys
CTA, Inc.
Gartner Group

Keane, Inc.
KPMG Peat Marwick
Litton Computer Services
Mastech
Matridigm
Peritus
PKS Information Services, Inc.
Shell Services Company
Viasoft, Inc.
Walker Interactive Systems

 I was very excited to be able to exchange my Y2K ideas with these experts. At the opening cocktail party, just to break the ice, I asked ten people if they thought that the year 2000 was a leap year. Only one person answered correctly, i.e., yes. "And these are the experts?" I asked myself. The next day, at the general conference, after several hours, I came to the realization that the entire conference was about doing business, making customer contacts, and selling the packaged solutions; not identifying or solving any Y2K problems. I couldn't believe it. The guy sitting next to me was the CEO of a major nationwide Y2K software house. After my bringing up of a few Y2K technical issues, he turned to me and said: "You have your head full of trivia." I was shocked, but managed to answer: "That's because I have to program what you call trivia."

IN-HOUSE SOLUTIONS:
Many companies could not afford to contract the Y2K solution providers. Some companies chose to ignore the Y2K issue entirely, adopting a wait and see attitude, that is, fix anything later that manifests itself as a problem. Other companies did some quick fixes to things that had already shown up as a problem.

In late 1997, I left the above bank project to join the IT department of an international book publishing company. They were running a large ERP book publishing system, and had all the source code for the system. During 1998, the issues of Y2K were discussed, and it was decided that a complete Y2K conversion be performed. The Y2K conversion began in November 1998. I wrote a table-driven search program which scanned all the source code and identified lines of code which were suspect of containing Y2K problems. The great advantage that we had was that the programs were being modified by the actual programmers responsible for them. We scanned about 8000 programs, and at the end of the project in January 1999, actually modified only 50 programs. When the year 2000 rolled around, we never had a problem.

THE TECHNICAL ISSUES:
The majority of problems which are considered to be Y2K problems, are merely date handling problems.

The following are some date handling problems which are not Y2K problems:

- Erroneous calculation of leap year.

- Erroneous calculation of days per month.

- Erroneous calculation of the week number for a given date.

- Erroneous calculation of the day of the week for a given date.

- Erroneous calculation of a person's age based on his date of birth.

- Erroneous calculation of the number of days between two dates in the same century.

- Erroneous validation of an input date, allowing invalid day, month, or year.

The above problems, or bugs, have been around in programs for many years, and have nothing to do with Y2K issues.

True Y2K Problems:

Y2K problems have to do with date logic, where the year is represented as a two-digit number, and different dates can have years in different centuries.

A program which handled dates with two-digit years from the 1800's during the 1900's, had this type of problem, though strictly speaking it was not called a Y2K problem.

The root of the Y2K problem is the continued representation of years as a two-digit number. If you attempted to search or sort dates in different centuries using only two-digit years, this obviously would not work. Internally, for searching and sorting, many Y2K solutions converted the two-digit year to four digits by applying some arbitrary algorithms beforehand. For example, if the particular system was developed in 1970, they converted two-digit years less than 70 to have a century of 20, and the others to have a century of 19. Obviously, this won't work beyond the year 2070. Another risk is that some programmers might use the two-digit year of 69 or 71 as the pivot year, instead of 70.

Of course, many IT departments used different solutions for continuing to handle two-digit years. This was an attempt for not expanding all their dates on data files to four digits, and for not converting all their keyed input date logic to four digits.

The bottom line to a complete Y2K conversion, is precisely converting all dates to have a four-digit year, both on the data files and in the programs. Based on the fact that suspect lines of code must be identified and converted, the programming effort to do this is basically the same as applying arbitrary conversions using two-digit years. Plus, the testing is greatly simplified. Many Y2K conversions also wisely fixed the non-Y2K problems listed above.

Y2K AWARENESS IN THE FUTURE:
Nothing much has changed in software development since the year 2000 regarding Y2K issues. Standards similar to SDLC are applied to a certain degree, but these standards do not address proper date handling and validation. Unit Testing, Integration Testing, and User Acceptance Testing do not include specific testing for the Y2K type of problems.
We weathered the Y2K storm, but have lowered our guard. Many problems found before 2000 were not adequately corrected, just a quick workaround was applied. Many of these quick fixes included so-called date algorithms for converting 2 digit years to 4 digit years. Many of these algorithms will not work in the next several decades.
Having been burned, most IT organizations are now insisting that years be stored as 4 digits. However, date handling awareness, in general, has not undergone a significant improvement since 2000.

Most programmers today still have difficulty determining if a year is a leap year. Some think that a year has 52 weeks, and extremely few know that a leap year beginning on a Saturday will span across 54 weeks. Others cannot correctly compute the number of days between two dates.

If we want to diminish Y2K-like problems in the future, we must educate our programmers and our test departments on these issues.
