Preamble
QB programmers often create webpages to show off their creations and to serve as an online web presence. However, sometimes the end result looks a little aesthetically displeasing, and that does have, I feel, a direct impact on how people will view the quality of the programs and demo’s featured on that page (at least, on whether or not they will be downloaded.) That isn’t a judgement, my page sucks too, but I prefer a minimalist look, but alas, I cannot tell you how to make a wicked layout and such. What I will be talking about, for the most part, is PHP, to allow you to create more interesting pages and utilities. I will also touch on CSS and XHTML as well, as they are a part of the whole web-design sphere of interest. This will hardly be exhaustive or even insightful, but is meant to be a jumping-off point, so that interest in these topics will be had, and cause the reader to delve further into the topics of their interest.
XHTML/CSS

First off, I recommend that you try to write your pages using XHTML Strict. Strict is what it says, which causes validation to be particularly rigid. If there are some tags or attributes that you need, they might be found in the XHTML Transitional mode. Of course, this implies that eventually you would want to make all the pages strict, but for whatever reason you can’t, so this exists for that purpose. XHTML Frameset is for frame pages. This isn’t particularly hard; it only requires some conversions, and cleaning up sloppiness. Basically, without going into too much detail, what is required to validate to XHTML includes the following: using lowercase tag names and attributes, thus becomes , all opened tags must be closed at the same level as the opening (so no interleaving tag opens/closes), and only using tags and attributes that apply the type document (Strict, Transitional, Frameset).

One of the more annoying things of strict is that you cannot use the “target” attribute in links. This can be faked by using javascript, or you can just ignore it, since a document marked as Strict but fails to validate as such will work just as well, and browsers will allow it to work. The whole point it just to force you to make clean pages that will work properly with the newer browsers.
Validate your pages here: http://validator.w3.org/

Of course, with XHTML comes the loss of the document formatting features like the FONT tag provided. The intention is that you use Cascading Style Sheets for all your formatting needs. CSS definitions can be imported from outside the current document, defined within the document, and also specified as “style” attributes on most tags. These are fairly easy to learn, and I suggest you adapt to use them.

Learn more about CSS here: http://www.w3schools.com/css/default.asp

PHP
Now that the basics for the actual webpage are out of the way, time to talk about the meat of the matter, PHP. PHP stands for, annoyingly enough, PHP Hypertext Preprocessor. It is a scripting language that is embedded directly into HTML documents. However, for the most part, servers will only process PHP code in documents with the extension php. PHP allows you to do a lot of the jobs CGI and ASP allow you to, but as it’s open and is available on many of the servers I’ve come across, I tended to use it.

PHP, as I said, is embedded in web pages, and it is executed on the server side of things, and the final output is sent to the browser, which is usually HTML data, but PHP can be used as, say, image files, where the php script can send the appropriate headers and data. The upshot of which is you can do things like The Car with his random image avatar. This means that if someone tries to view the source of a PHP file that was served to them (and assuming the server handled the php) they will only see the end result of the processing, not the source code for the php, which is in contrast to javascript, which is often used for client side scripting and of course would be visible if viewing the source. Another nice feature of PHP is that you ‘escape’ into it, using the tag <?php to enter a php section, and ?> to exit. Between php chunks, normal html tags and data can be used, so you don’t need to do a lot of bulky printings of html to generate the page.

I suppose first things first would be to determine if you can run PHP on your server at all, and if so, to get a little information about it. First, you must create a page, let’s call it test.php. Here are its contents:

<?php phpinfo(); ?>

Now you should upload this to your server. Access it… if you get nothing interesting, like perhaps the code itself, then it is possible that your server doesn’t handle PHP, unfortunately. Or, perhaps, you need to do some other setup, in which case you’ll have to read up on your server’s php usage protocols. At my school, we have to use a CGI handler, which is considered by php.net to be a bad setup, heh. Anyway, if all is well, you’ll see a generated page giving lots of information about the server’s installation of PHP and some of the information that you can access. Take note of the version number, as PHP has changed a few times from versions 2 to 3 to 4. I’m using a version of 4, but most of the things in this tutorial should still apply.
If you already know a language like C, C++, Javascript, Java, and the like, then you are halfway home, since the syntax of PHP is fairly similar, so at most you should scan the Appendix because there are some differences. If you’ve only ever used QB, you might want to read the Appendix before continuing.
First Example

So lets now tackle a simple program and introduce some interesting elements, and then I’ll discuss them after the fact. Note that the generated pages for these examples won’t necessarily conform to the xhtml/css things I said earlier, heh, which is mainly for brevity.
<html>

<body>

<?php

//determines the factorial of $val, 0 if $val is not an integer

function factorial($val)

{

 if (is_int($val) == false || $val <= 0) return 0;

 if ($val == 1) return 1;

 return $val * factorial($val - 1);

}

$num = 6;

echo “The factorial of $num is “;

echo factorial($num) . “
“;

/* now for something odd */
$num = “boink”;

echo “The factorial of $num is “;

echo factorial($num);

?>
</body>
</html>

So what does this do? Well, first we define a function called factorial, which takes a single variable, $val. You’ll first note that variable names always start with $, the rest of the variable name follows the usual form other languages allow for the most part. You’ll also notice that the types of variables are not explicitly specified. This allows flexible and also chaotic code, just nod and smile.
The first statement in the function immediately makes the function bail out with 0 if one of two conditions is true. The second is most obvious, if the value of $val is less than or equal to 0, then return zero. The first condition employs the function is_int to determine if $val is an integer (or, so say the docs, a numeric string, but ignore that), if it isn’t, then return 0. There are many of these types of functions to determine the types of data.
The following line has the function return 1 if the parameter $val is 1.

The next line does a little recursion, with which I hope everyone is familiar. If you aren’t, here’s a quick explanation, the returned value from the function is the current value of $val multiplied with the returned value of factorial with the parameter $val minus 1. This cascades or recurses back down the values until hitting the base case, where $val is 1, which breaks the recursion, and causes it all to collapse the stack and return the actual factorial of the original call. Now all that was just the function.

Now we create the variable $num and assign it the number 6, then echo/print out the string informing the user of what’s going on, and then echo’s the result of calling the function. An interesting thing here is that you can use a variable name inside a string without any special handling, since in a string, the $ character is special, to escape it to actually print “$num”, use the usual escape backslash character, as “\$num” which would actually print $num instead of 6.
The second block does the same, but reassigns the value of $num to the string “boink”, which just causes the factorial to be 0.

You’ll notice a few things, there is no declaration of a variable needed, just use it (a la QB), and as the variables are untyped, you can assign different types of data to a variable on the fly.

You’ll also notice that C style comments are in there, and that we escaped into PHP in the middle of the HTML document without problem, and also that since it’s an HTML document, we can’t just add a newline to the echo string to get to a new line, we need to add a
, spiffy. Of course, if the output were generated to a text file or something, then that would change, so keep the context in mind.
Escaping into PHP

Escaping into PHP works as it should, most of the time. There are funky ways you can do things, that don’t seem all that nice and clean, but you can do it. But you can use it to interesting effect, like:

<html>

<body>

<?php
function say($t)

{

?><h1><?php echo $t ?></h1>
<?php

}

say(“hello”);

say(“there”);

?>

</body>

</html>
We escape back into HTML in the middle of the function, to wrap the echo’ed output in an H1 tag. If this is run, and we view the source generated, we get this:

<html>

<body>

<h1>hello</h1>

<h1>there</h1>

</body>

</html>

A Hit Counter
To end this part of the tutorial, here is the code for a very simple webpage hit counter, I will explain the code after. There, are of course many different ways to code something like this, so this is just one way, and not necessarily the best way, or dare I say it, a good way :P

Put this code in a file called counter.php
<html>

<body>

<?php

$fp = fopen(“count.txt”, “r+”);

flock($fp, 2);

$count = fgets($fp, 4096);

rtrim($count);

$count += 1;

fseek($fp,0);

fputs($fp, $count);

flock($fp, 3);

fclose($fp);

echo $count;

?>

</body>

</html>
Now the purpose of this code is to increment the counter variable, keeping it in non-volatile storage, and displaying the new value in a simple html block.

First, the counter file is opened in r+ mode, which is read/write. The file handle is returned and stored in the variable $fp. This file handle is what we will use to interact with the file later, like a QB file number.

Then we lock the file, this is because multiple people may be accessing the webpage and cause the code to be executed multiple times in parallel, so locking the file prevents race conditions, as when the file is locked, other attempts to open it must wait until it is unlocked.

Now we get the first 4096 bytes of the file into a string variable $count, trims out the extra space, and then increment the value. PHP gracefully handles numeric strings and integers, and handles the conversions implicitly, though you can’t always rely on it.
The next lines put the cursor position into the count.txt file to be at the start again, writes the contents to the file (which is the previous numeric value incremented by one), and finally unlocks the file, as the next line closes the file completely.

The last line echoes $count to the browser.

Couple of extra notes here: This code presumes there is a file called count.txt in the present working directory of the script, which presumably was initialized with the contents of 0, and that the script can read and write it. The writing bit is a bit of a problem sometimes… it comes down to what role the execution of the script runs under. On some servers, the executing process of the PHP runs under nobody or perhaps the apache user, and probably does not have authority under user or group to write to the file, in which case you’ll have to make the count.txt world writable. On another server I’ve experimented with PHP on, they give the scripts the same access rights as me myself if I log into the server, which makes things a little nicer. You’ll have to determine how it works with where you intend to mount the pages.

Appendix

Syntax

For those who have only ever used QB, a newline in QB denotes the end of a statement, or a colon (for multiple statements on the same line). In PHP, as in C, C++, Java and many others, the semicolon denotes the end of a statement. So you can legally have, dothis1; dothis2; dothis3; However, this is usually not done for aesthetical reasons.

The looping structures and if blocks use a block delimiting technique different from QB. QB uses commands that denote the beginning of a block with the command itself, like DO or IF something. The end of the blocks are the properly nested LOOP or ENDIF. In PHP, like C, use curly braces to denote the blocks of influence. Blocks basically make several statements, into “one” statement. That is, am if statement only executes the one statement after it, but if you need to execute more than one, then you must wrap it in a block. If there is only one statement (where that statement could even be another blockable statement like if or for) then you don’t technically need the curly braces, but everyone has their own coding style.

So, for example:

if (false)

{

 dothis1;

 dothis2;

}

So what this does, is if false is true (which, luckily for logic, it isn’t), statements dothis1 and dothis2 are not executed.

Now drop the curly braces:

if (false)

 dothis1;

 dothis2;

Now what happens, false is still false, so dothis1 is not executed, however, dothis2 is. Hopefully this makes sense to everyone.

Further to that, you can do things like this

if (cond1)

 if (cond2)

 if (cond3)

 dothis;

VERY IMPORTANT: this might save you some headaches later on if you look for this when code goes awry. The semicolon, as said above, marks the end of a statement. With if and looping blocks (mentioned below) you tend not to put a semicolon after them, as that ends the statement, and the rest of the block is left to do it’s thing with no respect to the previous control element.

For example, the example

if (false)

{

 dothis1;

 dothis2;

}

If we make a subtle change, and accidentally put a semicolon after the end bracket on the if condition as such

if (false);

{

 dothis1;

 dothis2;

}

Then dothis1 and dothis2 will execute just fine. According to the language parser, the command it must not execute (due to the false condition) is the empty statement. This is allowed. And the other two statements execute just fine, as you can legally just use a block, or nested blocks, anywhere you want.

Blocks also involve the concept of scope (as do functions), see the Scope section for more information.
Control Elements

Now that we have a basic understanding of PHP, I’ll run down some of the elements and give little examples that will give you some more tools.

if elseif else blocks

These work as usual, you have your if with the condition in parenthesises afterward. The elseif words indentically to having an else if statement as in C. An interesting sidenote here is usually we have, to check equality, a == b, as C. PHP introduces the === operator. See the operator section for details.

while, for

The while works like in QB,

while (cond) { do stuff }

for has a structor identical to C and the like, which is different from basic. It has the form

for (exp1; exp2; exp3) {do stuff }

exp1 is an expression that is executed once, just before the loop begins, exp2 is evaluated for truth at the end of each iteration, if it evaluates to false, the loop is broken, exp3 is executed at every iteration. Sounds complicated, and indeed it can be, I’ve seen people do all sorts of interesting things in those 3 expression, I tend to keep them simpler, for easy reading. So for QB’ers who have no idea how this structure works given my description, here is the PHP loop equivalent of FOR i% = 1 to 10: dothis : NEXT i%
for ($i = 1; $i <= 10; $i++)

 dothis;

The first expression initializes our $i variable, the second continually returns true until $i passes 10, and the third expression increments $i by one (the ++ operator will be seen later)

break, continue
These are two statements which have an effect on a loop, and only have meaning when inside a looping block. When a break statement is reached, the loop is immediately terminated. When a continue statement is reached, that current iteration of the loop is terminated, and control passes up to the start of the loop again, incrementing and re-evaluating the loop’s termination conditions.

An example:

for ($i = 0; ;$i++)

{

 echo $i;
 if ($i < 3) continue;
 break;

}

$i is set to 0, and will increment at every loop. The usual termination condition in this loop is empty, and a condition of true is assumed. So this could loop forever… It prints 0, and then checks if 0 < 3, which it is, so it continues, goes to the top of the loop, increments $i. It prints it, 1, and continues again… when $i is 3, the if statement fails, 3 is not less than 3, the continue statement is skipped, and hits the break statement, which breaks the loop completely. Thus, the expected output of this is 012.

Note on scope: break and continue affect the inner most loop that they appear in. If you have a 3 deep series of loops, and in the inner most one, you decide there is a condition where control should break out of all 3 loops immediately, or ‘continue’ all three loops, you can specify a number after the break or continue statement to indicate how ‘deep’ to apply the break and continue statement. Other languages tend not to have this, and require flag variables and breaks, labelled breaks, or goto’s (which are like labelled breaks and one of the few good times to use goto, but note that goto doesn’t exist in php anyway). There is a potential for irritating bugs here… if you use a numbered break, for example, and then alter the code to add another loop on the outside, the numbered break no longer breaks out as far as it should.

switch

As in C, as here, is irritating, and the structure that allowed Duff’s Device (look it up, it’s amusing). Basically, the switch statement is analogous to the QB SELECT CASE construct, with a few differences.

The important thing to remember, to mimic a SELECT CASE with switch, is to break (switch statements are, in PHP, considered to be sort of a looping structure, just for the use of break and continue) at the end of every case-content, otherwise, control falls through into further cases. Here is a basic example, of which you should be able to immediately relate:
switch ($i)
{
case 0:
 echo “i is 0”;
 break;
case 1:
 echo “i is 1”;
 break;
case 2:
 echo “i is 2”;
 break;
 default:

 echo “i is something else”;

 break;
}
Notice the breaks, they cause control to leap to the end of the switch, which is what you’d normally want. However, if you were to remove all the breaks, and say, $i was 1, then the first condition would be skipped, then the second would execute, saying “i is 1”, but then go on and say “i is 2” and then “i is something else” This is what it means for control to fall through. It can be use to elegant effect, but usually it just makes things harder to read, and thus, harder to maintain.

Oh, and note that the else case here is just called default, and technically we don’t need the break after it’s statement.

And due to switch being a “loop” structure, according to the parser, you can use continue in here, but it acts like break. And using numbered breaks and loops (if say, the switch is inside a loop) does what is ‘right’.

return
For our purposes, this is simple. In a function, when you want to return the value (and also immediately end the function), use return (value_exp). If the function returns nothing, just plain return.

Operators
Not all of them are listed, as we haven’t covered everything allowed by the language yet, but here are the basics:

Arithmetic: + - * / are as you expect, modulus is %

Assignment: = sets the left to be the right, as you’d expect. However, equality-comparison is NOT = alone. This is often a good place for bugs to crop up.

Note that some operators can be combined with the assignment operator, such as addition, to create +=, where $i += 2 is equivalent to $i = $i + 2

Comparison:

== is for equality

=== is for equality and if both variables are of the same type (but this is only in PHP4 and up)

!= and <> are both for non-equality

!== is for non-equality and non-same-typed (again, PHP4)

and > >= < <= are as you expect

Inc/Dec/rementing:

++ and -- increment and decrement a variable respectively. They can be applied as a suffix or prefix.

The statement echo ++$i displays the value of $i incremented by one, however, echo $i++ displays the value of $i before the increment, and then the increment occurs. It is a subtle difference and often causes hard to track bugs, so unless you’re comfortable with it, I would tend to just use the suffix form, and as a statement to itself, so no matter what happens, I know the intention.

Logical:

&& and || are for “and” and “or” respectively, ! for not, xor for itself. The keywords ‘and’ and ‘or’ exist as well, for use instead of && and ||, however, they operate at a different precedence, and things tend to get confused. As this is like C and such languages, and they use && and ||, I would stick with that.

Short-circuiting: This is apparently present in PHP4, but perhaps not earlier. It is merely a way of ending evaluation of a series of logical equivalences, if there is no need to continue.

For example,
if (cond1 && cond2) something;
Now, without short-circuiting, cond1 is evaluated, cond2 is evaluated, and they are anded to determine the final Boolean result. Now, with short circuiting, processing would start with cond1, if it were false, and then the process sees that it is being anded with something, it doesn’t even need to look at cond2, or evaluate it, since we know that if something is anded with something, and one is false, the whole thing is false. Similarly with an ||, if the first is true, the second condition is ignored. This is usually well and good, but it can lead to some interesting troubles if you’re not careful, such as:
if (($d != 0) && ($n / $d == 2)) something;
So we have here two conditions to be evaluated, and they are anded together. In language/compiler/interpreter that didn’t use short circuiting, this would error out. Why? Well, if $d was 0, then the first condition would evaluate to false, but it would try to evaluate the second condition, and get a Division By Zero warning. But, with a short-circuiting system, we can do this.
Is this coding style bad? Well, sometimes it can make things less readable, in that some combinations of events aren’t immediately apparent in what they do and if they are executed. Further, we decide that we want to do some extra work in the case where the division results in 2, before work done if the denominator was zero, we might split up the if statement into a nested structure, and if the division condition was the outer if, then it would blow up again.
string:
The . operator is concatenation. .= works like the combined arithmetic operators.

(There is lots to say about strings in general, which might be in a future tutorial)

Constants:
define(“constant_name”, “constant_value”);

When referring to a constant, there is no preceeding $

The scope of a constant is superglobal.

Scope
PHP tends to have only one scope, so if you had code such as

{

 $newvar = 10;

}

echo $newvar;

Where $newvar didn’t exist until now, it will indeed print 10. However, once you use user defined functions, scope comes into play.

$newvar = 10;

function dothis()

{

 echo $newvar;

}

This will fail to do what is expected, as global scoped elements are not seen. There are a couple of ways to be able to see global variables. One is to use the global keyword, which binds a global variable to the current scope:
$newvar = 10;

function dothis()

{

 global $newvar;

 echo $newvar;

}

Also, you can use the $GLOBALS array, which is superglobal (PHP4), that is, it automatically exists in any scope. So the function could be written as such:

$newvar = 10;

function dothis()

{

 echo $GLOBALS[“newvar”];

}

Postample
I know we didn’t get to much actual fun stuff this time around, but hopefully I’ll be doing that in the next tutorial. I hope to cover such things as references, arrays, passing data to PHP, more filesystem stuff and perhaps MySQL if I’m feeling up to it. There’s still is a lot to talk about.

Anyway, if you want to delve into more PHP, check out www.php.net

And a note about the contents of this tutorial and the code: I can’t guarantee the accuracy of everything here, or that the code won’t explode the universe or anything, which is the usual thing people say. Even more, PHP has undergone many changes, I tried to list some of the things I’ve used in PHP4 that didn’t exist before, but other things are probably floating around, so beware. And as programming languages are complicated beasts, I may have made mistakes just in some of my statements, or my explanations, but I think everything there is fine, or at least, suitable for the current context, which is just getting people off the ground in using PHP.

Contact me at admin@SPAMMY19day[d0t]com and visit me at http://19day.com
