Creature Simulation Through the Use of AI

This way of doing things is called Gray Matter Simulated Intelligence Systems. GMSIS aims to make the probability for any given set of outside inputs gray, or non-specific. If you want a realistic ecosystem feel, GMSIS is probably what you want. It supports system dynamics and has the function to create your own ecosystem. This provides a new type of immersion for your games. Interested? Read on.

Absolute Deterministic Systems will always fail.

Read that statement and then read it again. Think it, breathe it, and realize it. Now, turn it on itself. That’s right, apply its own message to itself. Isn’t it contradicting itself? Because aren’t you, by seeing an absolute deterministic system and saying it will fail, doing that by an absolute system of logic? So, what does this statement have to do with AI, if it appears to contradict its self?

To understand the relationship, you first have to understand what AI, in the current sense of the term, implies. Artificial Intelligence is basically any mechanism, or system, designed and created to take a set of circumstances, in the form of variables, and then make a decision and carry that decision out. The first game AI, which was in a pong game, simply told the paddle to follow the ball. It took in the single variable, and did its best to match it.

So, now I have showed the statement contradicts itself AND given an example where it is flat out wrong. "What’s up here?" You’re probably wondering (or something along the lines of, "What’s this crazy bastard saying now?!?!"). Technically, the above statement is a paradox, in invalidates itself. Its existence demands its non-existence. One word takes this paradox and flips it around to become the main idea behind a better AI. Since it can’t be true in all cases, it obviously depends on the system. Before we continue, I need to define a system.

Systems:

A system is basically a construct of elements that is self involved in such a way that the loss any particular element of the system suffers is corrected by another element. Elements need to give and receive, the system cannot be stagnate. This system will reach a stabile flow from one to another given sufficient time. If you have ever had a chemistry class, just think of equilibrium.

In a two element system, it has failed, if it has lost one of its elements through neglect, in other words, an element spends all of itself (or all of itself is spent) and not sustained. By losing this element, the system has failed, for the remaining element cannot receive what it needs. If a three-or-more-element-system loses an element, but manages to reach stability despite the loss, than it has not failed. In fact, the loss of an element can be necessary to the survival of a system. For example, an element that consumes too much, while releasing little can be lethal to a system.

Intelligence deals with systems. Life requires systems to survive. Food Chains demonstrate this in that the individual elements require something other than what they produce, and thus make a large loop when all the needs are coupled with products. Example: Zebra’s need grass and plants and produce meat (among other things). Lions need meat and produce fertilizer for the grass (when they die). Although it is more complicated than this, since elements couple with a variety of other elements, this shows the basic relationship of a system.

So, where is AI in all this? That’s easy, to simulate intelligence you need to implement a system. The difficulty of implementing a system, on the other hand, can be as hard as you are willing to work on it. So now the question becomes, "Where do I start, how do I do this?"

Step 1: Pre-visualization

With such a complicated topic, it is a necessity that you sit down and think before writing that SCREEN (or TYPE, DECLARE, ‘$INCLUDE, etc...) command. First and foremost, get an idea of how you are going to handle inputs, outputs, and needs. These three things are vital to the success of your project. Next, start defining possible I/O and Needs (ION’s). Example: Hunger, Energy (needs). Food (In). Go Eat (out). How many you have is up to you, keep in mind both that for each one you add, you are adding one more level of complexity in your code, and also that the more you have—provided that you implement them right—the more realistic and life-like your system is going to seem. You can also get an idea of what types of creatures you are going to create, as it will help with defining ION’s, but this isn’t really necessary since you aren’t actually creating the system yet, just the handling of systems.

I would suggest that before you move onto the next step, you have all the ION’s you want written down and have a simple idea of their relationship and how they will interweave your system.

Also, know how complicated you want it, and stick to it, expansion or contraction with imprecise systems (simulation AI) can be very messy.

Step 2: Translation

Now that you have the system handler down on paper, its time to get that into code, i.e. translate it into variables. Although you can do any type of variable system you wish to define your ION’s in your code, the best move is to combine everything into a TYPE. This way, you can easily get multiple creatures and debug your code. Within a type statement, it’s a good idea to use statements such as "Health as DOUBLE" rather than "H as Double" or something even more cryptic. This way, you don’t have to keep referencing the TYPE code because it is easy to remember. Also, use (‘)’s or REM’s to segment the different variables into the different groups of related items.

You should make another TYPE for inputs (should include location variables, var’s for type of input, source of input, and amount/degree of input). Inputs are just as important as outputs and needs, since your input system is what the AI uses to get a ‘grip’ on its world.

Needs are usually translated to stats such as Health, Energy, etc. as I mentioned above. To help simulate real life better, it’s a good idea to include variables that modify the rate of decay for these stats. These modification stats usually are static, or very slow to change. To clarify, the counterpart of Hunger would be Metabolism because a faster metabolism would cause the Hunger stat to decrease faster. You can use a random number for this, or if you are doing something as complicated as breeding, you can combine the stats of the parents.

Step 3: Processing

So far we have a clear plan of attack and we have set up a structure that will support our AI. Now we have to set up the grand calculator, the gray matter of our AI creatures, if you will. It is difficult to explain this calculator in definite terms, since your stats can vary to such degrees. Therefore, I will tell you an all-encompassing description of what you need, and you will have to divide that up into your own individual AI processing core (AICP).

Before dwelving into the depths of this mechanism, you need to understand what fuzzy logic is, read this entry from wikipedia.com first to understand it. To make it specific to what I was saying, I will show you one of the parts that is most relevant.

Normal code:

IF creature.hunger THEN eat

Fuzzified code

IF creature.hunger is great THEN must eat

IF creature.hunger is alot THEN really should eat

IF creature.hunger is avg. THEN ought to eat

IF creature.hunger is low THEN eat if convenient

IF creature.hunger is no THEN don’t eat

This example adds varying levels of needing to eat which could be translated into your world as whether its worth taking a risk to eat.

This example is only two variables, allowing little variation. As you add more and more variables, your logic can grow exponentially, adding variety (read: flavor, interest, re-playability, etc...) to your creatures actions.

Although the definition of fuzzy logic has no room for random variables, our code can fit it in. By adding slight randomness to the statements before but not after the THEN, we can add even more randomness. Note that by doing this, we are adding instability to the system and completely unpredictable elements (unstable) will ruin a system—or themselves. It will probably take a lot of testing, but basically, you have to make sure the system will stabilize (balance).

Ok, so how do we calculate this moshpit of needs and inputs to determine outputs? We need an equation that finds the importance of each need that takes into account how much its needed, how much it will cost to get it, and risks.

Need Assessment:

A need is easy to get: it is just the direct variable perhaps multiplied by an importance factor (thirst is most important, then hunger, then sleep, etc...).

Cost Assessment:

The second is not as easy. For this part, you will need a simple memory system, how complicated you make it is your choice. Basically, this just has to hold a value that tells the cost to get there; for example it takes five energy due to the walking, which then takes 2 hunger, etc. This will use memory based on your AI’s current area and destination area. Areas will be discussed later on.

Risk Assessment:

Risk determines the integrity of the data. Think of it like this: You would rather go to a restaurant 2 miles away that you’ve been to 100 times as opposed to the strange new joint that opened up 1 mile away. This is easily implemented, just define a variable for the average of the data, and a variable holding how many trials have occurred. Every time you get a new value, add it like this:

Integrity = Integrity * (trials – 1) / trials + new value * 1 / trials

Then, take the integrity, multiply it by an importance factor and then divide cost by that product. This way, the lower the integrity of the situation is, the higher the cost becomes. The importance factor determines how much your AI will risk. In other words, how cautious your AI is.

Risks are also the situations of getting hurt or killed. To calculate the chance of this, your AI has to keep track of areas. I will talk later about dividing maps/game worlds into areas. For the current moment, we will just assume that the AI keeps track of area’s in which it got hurt. This will be sort of like the integrity formula. Each area shall be remembered as a whole, so for any given area, there will be a risk factor of getting hurt. Although an AI may get hurt in an area that is really safe for the most part, it still would prefer this area than in an area that is more dangerous and has hurt it more times. At first, the AI is weak and more prone to danger, and getting hurt. But, just like a child, it will learn after more trials.

Now that you have the need, cost, and risk, you have to calculate them. Since the risk value is calculated into the cost variable, it is just the processing of cost and need. You will now have to compare the different values to come up with an output. Use fuzzy logic to compare the practicality of choosing each stat. Then sort them in order of best to worst and choose the best.

Areas:

Because of the limitation of current household computers, giving the AI the ability to learn and distinguish certain areas as groups is impractical. It is also 100x harder than telling him. Basically, in the I/O –intensive way that I do things, each object in the world would have to have an output of some sort with which the AI could sort. This is quite impractical considering the size of an average level and the average amount of objects. If you want to do this, go ahead it’s your game, and you might pull it off. Otherwise, what you should do is include a variable in your map TYPE that holds what group each tile/map segment belongs in.

It would also be good if you separate it two ways: General and specific. General would be water, specific would be this particular river. By dividing your map this way, you are in essence cutting the AI’s food into bite size pieces. AI’s will then chew it the rest of the way. I.e. they will take your separate objects and learn them through experience. Example: The AI jumps into water and drinks (general). It know knows that water is where drinking is best served. This particular river (specific group) contains water serpents that attack the AI. Since the water does NOT generate the output, the damage is remembered in this particular stream and will be calculated in the future in this fashion.

Other Considerations:

Moods and Emotions. These can be used to affect an output directly. Basically, if a creature is angry, it might not care about wasting energy and taking bigger risks than usual. If a creature is depressed, it might sit on its butt instead of going and eating. This either overrides or heavily influences the output. To moderate emotions/moods you can have an importance variable. This would be maximizing emotions for an emotional creature, or minimizing their affect on a controlled creature. Emotions will give your creatures a human feel, because it seems that animals don’t show emotion, at least not in a magnitude even close to that of humans.

Dynamic Memory size. This is more of a fantasy than anything else, since it would be so hard to implement. Basically, although the variable would be configured for the maximum, you would have a limiting value that would limit how much it can remember. This wouldn’t apply to the memory of costs and such, but rather it would affect the number of specific locations an AI could remember.

Periodic Influences. Humans’ moods, minds, and bodies can be measured in sine waves. These are separate it into Emotional/Spiritual, Mental, and Physical categories. The period between the three is different, thus making repeats rare. You may want to use this to simulate life. Another example can be seen in animals. They usually have mating season which, when you think about it, is periodic.

Group Dynamics. Add an input/output that establishes a leader of a group. This would be the leader of the pack. For a more herbivore feel, add a need for community and have each give an output that basically says, "I'm here". Thus they would tend to flock together, following the creature most in need.

Conclusion

There are so many options when creating AI that no one can tell you which one is right for your game. Unfortunately, GMSIS is processor heavy and requires sacrifice of graphics to be truly effective. On the flip side, you can manage a different type of immersion into your game that someone was looking for. If you want unspecific yet directed AI, GMSIS is designed to fit just those specifications. The unspecific nature of GMSIS itself allows you to customize it to fit your needs. In the end, you are going to have to compute all the values in your extremely superior gray matter and see if the Gray Matter Simulated Intelligence Systems is what you want.

Thank you so very much for reading all this, I really want criticism as well, since 2.5K+ words is overwhelming for one person to perfect.

Always remember; send all comments & questions to barbarian_roleplayer@yahoo.com
Back to Main
