DATA VALIDATION IMPLEMENTATION

How many times have you heard the old saying “Garbage in, garbage out”? Some programmers use this line when their application doesn’t work correctly because of invalid data. Most of the time, the invalid data is a direct result of improper or no data validation in their programs.

This document will focus on defining the data validation procedures required for the most common data types, which are:
- Values or amounts.

- Codes

- Dates

- Names and Addresses

At the end of this document, you will find suggested functions and subroutines which are referenced by the procedures for data validation.
1. VALUES OR AMOUNTS
Values or amounts are data fields which will normally be used in arithmetic calculations. The following are the most common considerations for this data type:

- Is it numeric?
- Can it be zero?

- Can it be negative?

- Can it contain a decimal point?
- Is there a minimum value, a maximum value, or both?

The above considerations can all be covered by the following pseudo-code procedure:
SIGN = 1

DECIMALPLACES = 0

READ OR GET THE VALUE INTO AMT$
IF IT CAN BE NEGATIVE THEN

 IF THE FIRST BYTE OF AMT$ = “-“ THEN

 SIGN = -1

 DELETE THE FIRST BYTE OF AMT$

 END IF

END IF

IF IT CAN CONTAIN A DECIMAL POINT THEN

 DECIMALPLACES = THE NUMBER OF DECIMAL PLACES ALLOWED

END IF

Rem Perform the function NumDecimal
IF NOT NumDecimal(AMT$,DecimalPlaces) THEN

 DISPLAY AN ERROR MESSAGE (NUMERIC OR DECIMAL PROBLEM)

 TERMINATE PROCEDURE
END IF

IF THE VALUE CANNOT BE ZERO AND AMT$ = ZERO THEN
 DISPLAY AN ERROR MESSAGE (ZERO VALUE NOT ALLOWED)

 TERMINATE PROCEDURE

ELSE
IF THE LEADING BYTE IN AMT$ IS A ZERO THEN

 DISPLAY A WARNING MESSAGE (VALUE WITH A LEADING ZERO)

 Rem A leading zero could be an indication of a keying error.

 TERMINATE PROCEDURE

END IF

IF SIGN = -1 THEN INSERT A “-“ INTO THE FIRST BYTE OF AMT$.
IF THERE IS A MINIMUM VALUE, INSURE THAT AMT$ IS NOT LESS THAN MINIMUM.

IF THERE IS A MAXIMUM VALUE, INSURE THAT AMT$ IS NOT GREATER THAN MAXIMUM.

(END PROCEDURE)
Values and Amounts – Edit for Reasonableness: Some poorly designed data entry forms create situations which must be edited for reasonableness. Example:

- Input the number of days worked last week. Input = 1

- Input the total hours worked last week. Input = 35

The number of days worked of 1 is valid, as is the total hours of 35. But, they don’t coincide with each other --- they’re not reasonable when considered together.

In this example, the program determines that the two figures are not reasonable, but cannot determine which, or both, of them are wrong. The only alternative is to issue an error message and re-capture both figures.
After regular numeric validation, values and amounts may require additional editing for reasonableness. Here are some examples:

- Is the Cost Amount of an item greater than the Selling Price?

- Is the Selling Price minus the Discount less than the Cost?

- Do the number of years seniority of an employee exceed his age?
- Do the number of weeks accrued vacation for an employee exceed his total number of weeks of seniority?

2. CODES

Codes are data fields which are not used for arithmetic, even though they may be numeric. They are used as identification or reference.

Common Codes: The following are some common codes: Social Security Number, EAN or UPC article number, ISBN book number, telephone number, zip-code, etc.

100% validation of this type of code requires an updated file with the latest codes, provided by the organization responsible for its maintenance. Beware of copies of these files which are not issued by the responsible, official organization.
Your application may not require 100% validation of these codes if it is only going to use the codes for general information. Example: If your application is storing the user’s Social Security Number, but never uses this number for any official document like a W2 or 1099 form, then the number can be considered for general information only.
Codes like EAN, UPC and ISBN can be partially validated to some extent by verifying the check digit, the algorithms for which are readily available.

Proprietary Codes: These are codes unique to your application, like: Inventory Number, Member Number, Status Code, Transaction Code, etc.
If the user is providing one of these codes as input, you must validate it. Here are some considerations:
- If the code is unique to this program, that is, it is not referenced by any other program, and there are only a few combinations, then you can validate the code with some IF’s or CASE statements, or by using an array containing the valid codes. Keep the validation code as simple and straightforward as possible, so that future modifications to the codes can easily me made. If there are many combinations of the code, then you should maintain them on a file, otherwise you will be modifying your program on every update of the codes.
- If the code is not unique to your program, that is, it is referenced or maintained by another program, then the valid codes must reside on a file.
- If you are designing the codes, keep them simple, and without any specific meaning. For example, if you were designing the part number for an inventory system, don’t fall into the Industrial Engineering type trap of designing a meaningful code, like: 2 digits for department, 2 digits for style, 2 digits for size, 1 digit for color, etc. The code might look pretty that way, but remember this old axiom: “The more intelligence you put in a code, the quicker it will corrupt.”
Why? Because things change. You now have 85 styles which fit nice into 2 digits. Next year you discover that the inventory has to handle 110 styles. What do you do? Convert the entire inventory system to add a third digit to style? Or, keep to the 2 digits and make all the new styles an alphanumeric code, having to change a bunch of programming? You get the point.

One argument for intelligent codes is that the users can remember them better that way. In reality, the users will get to know and memorize the codes anyway. So, if you have let’s say 100,000 part numbers, I suggest that, allowing for expansion, you start assigning 7 digit part numbers in the range of 100000c to 300000c with your favorite check digit “c” on the end. You can assign these part numbers in any order that you like, preferably random.
Strong Recommendation: If valid codes, common or proprietary, are provided on a file, then every time you go to use one of these external code files in your application, first run the file through a small format verification program to insure the following:

- If all the codes are supposed to be numeric, check them.
 You can do this as follows:

 IF NOT NUMSTRICT(CODE$) THEN DISPLAY CODE NOT NUMERIC MESSAGE …
- If the codes are supposed to be fixed length, check it. If not fixed length, check the minimum and maximum code size defined.
- Does the file contain an expected number of code records?

- If the code records are supposed to be in sequence, check it. Be careful, some variable length numeric codes may be appear on the file left justified in the code field.
- Watch out, codes are not values, they may contain leading zeros.

- Note: Finding an invalid input code on an external code file is just as bad as not finding a valid code.

3. DATES

Proper validation of date fields can be a real programming challenge. Watch out for the common pitfall of using a two-digit year --- remember the Y2K problem. The validation of the actual digits of the date is compounded by required input formats, such as: MM/DD/YYYY, DD/MM/YYYY, YYYYMMDD, and many others.
Combo Boxes: Some programs circumvent the format problems by having the user select the day, month and year from combo boxes. But even using combo boxes, after the date is obtained, the program still has to validate the days per month and the leap year for 29 days in February. It is possible to implement sophisticated, dynamic combo boxes, processed in the order of year, month, day, which would handle the mentioned verification.
Date Validation: After we have processed whichever the input data format was required of the user, we end up with an eight byte string containing YYYYMMDD. This is usually the most common format required by date validation routines.
An example of using a date validation routine:
From the Suggested Functions and Subroutines at the end of this document, setup the Date Initialization Section at the beginning of your program, and include the Date.Check Subroutine in your program.
Z$ = the date string in YYYYMMDD format
GOSUB DATE.CHECK
IF DATE.OK = 0 THEN PRINT INVALID DATE MESSAGE …

Dates – Edit for Reasonableness:
Here’s an example of a common edit for reasonableness:

The input program for a university entrance application asks for date of birth. The user enters 12/23/1855 which is a "valid" date, but is not "reasonable" for this particular application, since the entrance of a 150 year old person into a university is not reasonable. Thus, a warning message should be issued.

Other common problems occur when the user is asked for a range of dates.

- Is the from-date less than the to-date?

- Can the from-date be equal to the to-date?

- How far into the past can the from-date be?

- Can the to-date be into the future?

- Can the from-date be less than an already provided date?

- Can the to-date be greater than an already provided date?

Additional needs for editing for reasonableness are often brought about by poorly designed input forms. Example:

The program requests the user’s date of birth, and also his age. This is not simple to validate. Does the program really need to store both fields? Probably not, especially since his age is subject to change. Request the date of birth only. Then, if your application requires it, your program can generate the age value. (The code for this is available upon request.)
4. NAMES AND ADDRESSES

At first glance, names and addresses seem to be very simple to capture. Much depends on how the application is going to use these fields. After we store this information on a file, here are some of the issues:
- Do we want to produce reports in Last Name sequence?

- Do we want to produce reports in City and State sequence?

- Do we want to produce envelopes in Zip Code sequence?
- Do we want to do a lookup by Last Name?
If we need to do any of the above, we need to format and validate the names and addresses. Here are some recommendations:

- Determine the maximum field size, and set aside separate fields for input and file storing of the fields, as follows:

 -- First Name

 -- Middle Name or Initial

 -- Last Name

 -- Second Last Name or Mother’s Maiden Name (optional)

 -- C/O (Care of – optional)
 -- Street Address Line 1

 -- Street Address Line 2 (optional)

 -- Street Address Line 3 (optional, only allow if have Addr Line 2)

 -- Country (USA or other full country name in English)

 -- City

 -- State Code (optional if Country not USA)

 -- State/Province/Etc. Name (mandatory if Country not USA)

 -- Zip-code (optional up to 10 characters if not USA)
- Special characters allowed in names: Only allow ‘.- and blank unless you determine otherwise. Also, do not allow accented vowels or other diacritical marks, or you will have never-ending headaches.
- Preferably, use SOLID CAPS for all name and address fields. This avoids names that begin with lowercase letters, especially in last names. It also makes sorting and searching much simpler.
- If the user’s name and address information is critical for the application, I suggest you find a way of delivering the information to the corresponding user, by report, email, or other, and having him sign acceptance of the information.
- If the zip-codes are to be used for mass mailing, I suggest you obtain a validation file from the United States Postal Service.
CONCLUSION
I did not perform an exhaustive analysis on the subject. Most of the recommendations are based on recent experience. I am certain that as you browse through this document, you will think of other circumstances which require data validation considerations.
An IT manager once said to me: “You cannot do things 100%.” This may turn out to be true in general, but if you start out developing an application with this predetermined, erroneous attitude, then you will never achieve 100%. You must “go for the gold”. You must shoot for 100%.
SUGGESTED FUNCTIONS AND SUBROUTINES
REM |---|

REM | D A T E I N I T I A L I Z A T I O N S E C T I O N |

REM |---|

DEFINT A-Z

DECLARE FUNCTION NumDecimal (Z$,DecimalPlaces)

DECLARE FUNCTION NumStrict (Z$)

DECLARE FUNCTION IsLeapYear% (Z)

DIM DATE.OK AS INTEGER 'Valid date indicator: -1=True, 0=False.

DIM ZYY AS INTEGER 'Value of the 4 digit year.

DIM ZMM AS INTEGER 'Value of the 2 digit month.

DIM ZDD AS INTEGER 'Value of the 2 digit day.

rem Setup days-per-month table.

DIM ZMO(1 TO 12) AS INTEGER
DATA 31,28,31,30,31,30,31,31,30,31,30,31

FOR ZMM=1 TO 12:READ ZMO(ZMM):NEXT

REM ***
REM (Application specific code goes here)
REM ***
REM **************** DATE.CHECK SUBROUTINE **************************
REM *

REM *** VALIDATE A DATE IN YYYYMMDD FORMAT.

REM *

REM * INPUT: Z$ = Given date in format YYYYMMDD.

REM *

REM * OUTPUT: DATE.OK = -1 if input date is VALID. (true)

REM * 0 if input date is INVALID. (false)

REM * (if VALID):

REM * ZYY = Value of 4 digit year.

REM * ZMM = Value of month.

REM * ZDD = Value of day.

REM *

REM *

DATE.CHECK:

 DATE.OK = 0 'preset to false

 IF NOT NUMSTRICT(Z$) THEN RETURN

 ZDD=VAL(RIGHT$(Z$,2)) 'Set day

 ZMM=VAL(MID$(Z$,5,2)) 'Set month.

 ZYY=VAL(LEFT$(Z$,4)) 'Set year.

 IF ZMM<1 OR ZMM>12 OR ZDD<1 OR ZDD>31 THEN RETURN

 IF ZMO(ZMM)+1*(-(ZMM=2 AND ISLEAPYEAR(ZYY))) < ZDD THEN RETURN

 ' If expression (month=2 and is leapyear) is TRUE which is -1, then

 ' taking the negative of this issues a plus 1. Conversely, FALSE

 ' always gives a zero. Multiplying the +1 by this result of 1 or 0

 ' will either add 1 or not to the number of days in the month.

 ' The logic wants to add 1 only when it is February and leap year.

 DATE.OK = -1 '-1=valid (true)

RETURN

END

REM ***
REM ***** D A T E F U N C T I O N S *****************************
REM ***
' ====================== ISLEAPYEAR ==========================

' Determines if a year is a leap year or not.

' ==

'

FUNCTION IsLeapYear (Z) STATIC

 ' If the year is evenly divisible by 4 and not divisible

 ' by 100, or if the year is evenly divisible by 400, then

 ' it's a leap year:

 IsLeapYear = (Z MOD 4 = 0 AND Z MOD 100 <> 0) OR (Z MOD 400 = 0)

END FUNCTION

' ===
FUNCTION NumStrict (Z$)

REM *

REM *** CHECK FOR STRICTLY NUMERIC (NO NULL, NO NEGATIVE, NO DECIMAL)

REM *

 NumStrict=0 'Init to False

 IF Z$="" THEN EXIT FUNCTION

 FOR X = 1 TO LEN(Z$)

 A=ASC(MID$(Z$,X,1))

 IF A<48 OR A>57 THEN EXIT FUNCTION

 NEXT X

 NumStrict = -1 'True

END FUNCTION

REM ***
REM ***** O T H E R V A L I D A T I O N F U N C T I O N S *****
REM ***
FUNCTION NumDecimal (Z$,DecimalPlaces)

REM *

REM *** CHECK FOR STRICTLY NUMERIC (NO NULL, NO NEGATIVE, ALLOWING

REM * SPECIFIED DECIMAL PLACES)

REM The validity of the DecimalPlaces parameter is the responsibility

REM of the programmer using this function.

 NumDecimal=0 'Initialize result to False.

 W$=Z$ 'Save original input, may modify.

 IF W$="" THEN EXIT FUNCTION 'False if null.

 ZZP=INSTR(W$,".") 'Scan for a decimal point.

 IF ZZP>0 and DecimalPlaces>0 THEN 'See if got one and decimalplaces
 'is not zero.

 MID$(W$,ZZP,1)="0" 'Replace decpt with a zero.
 rem We found a decimal pt and replaced it with a 0. Now check if

 rem the decimal pt is beyond the allowed position, or if there is

 rem another decimal pt.

 IF ZZP < LEN(W$)-DecimalPlaces OR INSTR(W$,".") THEN EXIT FUNCTION
 END IF

 FOR ZZ = 1 TO LEN(W$) 'The rest should be numeric, check.
 A=ASC(MID$(W$,ZZ,1))

 IF A<48 OR A>57 THEN EXIT FUNCTION

 NEXT ZZ

 NumDecimal = -1 'True

END FUNCTION

(END DOCUMENT)
If you have any questions, comments or suggestions, contact:
Edward F. Moneo

moneo@prodigy.net.mx
