Arrays
Arrays in PHP are powerful little buggers, and they seem to work fairly fast. They are as easy to use as vectors, but they can easily act as simple little map functions. PHP also has a few algorithmic tools for working with arrays, and a new looping control and operators.

First, I’ll show you the different ways to initialize an array.

$a1 = array();

$a2 = array(“Item1”, “Item2”, “Item3”);

$a3 = array(“breakfast” => “pancake”, “lunch” => “soup”, “dinner” => “pizza”);

$a4 = array(2 => array(“1+1”), 3 => array(“1+2”, “2+1”), 4 => array(“1+3”, “3+1”, “2+2”));

a1 is an empty array, waiting to have something put into it. We’ll look at how to do that in a bit.

a2 is an array of size 3. It contains the values “Item1”, “Item2” and “Item3”. As we didn’t specify the keys, the natural mapping is $a2[0] contains “Item1”, and then onward.

a3 is where things get fun, it maps, in abstract, a mealtime, to the meal. So we can use, in natural array ways, strings, to map to strings. In the notation, we get key => value, comma delimited.

a4 shows how to initialize a multidimensional array, where the value of each element is an array itself, and the keys are specified. In this case, an int is mapped to an array of the strings denoting the different ways integers can be added to arrive at that result.

Note that you don’t have to explicitly map things if you want to use the natural ordered numbering, like was shown in $a2, but then you can go on and specify a key if you like, and if there is a key conflict (either 2 specified keys, or one specified and one not), then the latest one to be specified wins.

Also note that since PHP does not use strict typing as we’ve known it, you can mix and match array key types and value types, they really are quite powerful, but then again, it can bog you down.

For each

The foreach construct was added as many times we need to iterate over all the objects in a collection. This allows us to easily go through all the records of an array (which I will hopefully discuss in a later tutorial) and then you can do something with the information.

There are two forms to the foreach control statement,

foreach(array_exp as $value) where array_exp is an expression that finally evaluates to an array, or in the simple case, is just the name of an array, and $value is the name of the variable that the current value of the array is assigned during iteration. Note that $value is just what you get out of the array given one of the indicies.

foreach(array_exp as $index => $value) where array_exp is as above, as is $value. $index is assigned, on each iteration, the value of the index into the array that got us the $value. That is, for a given $index, $value pair on any interation, array_exp[$index] = $value. Note that you can’t alter the array values itself, not directly, you need to get a reference, but that is for another issue.

Reference Variables

References are a little confusing, as they don’t usually work as you’d expect. They aren’t like pointers, they are just aliases for other variables. Their use comes most when passing parameters, and retrieving them, by reference. To pass by reference, use the & symbol in front of the variable name in the parameter list of the function, or pass the variable with the & symbol in front. From what I’ve read, references seem not to work very well, and lead to unexpected behaviour. I’m mentioning them for completeness, but I tend not to use them myself.
Output

From the last tutorial, you know that if you want to output the value of a variable inside a text string, you can, just:

echo “hello, your name is $firstname”;

You can do this with arrays, but you must wrap the statement in curly brackets, as such:

echo “hello, your name is {$fullname[‘firstname’]}”;

where $fullname is an array of keys firstname and lastname, and they map to what one would expect.

Operators
Unlike many of the languages I’ve worked with, arrays in PHP get their own predefined operators, and they can be fairly useful.

Union: $a + $b unions $a and $b, duplicated items are overwritten by the right hand operand. Note that if you want a concatenation, use the array_merge function.
Equality: $a == $b is true if $a and $b have the same values

Identity: $a === $b is true if $a and $b have the same values, mapped from the same keys, in the same order.

Equality and Identity have negations, != and !== respectively

Outside Data
So far, we’ve only dealt with programs dealing with files and such, or just doing what they need to do and shut down. These uses are not very interesting; we need to be able to have a user to send data into a script so PHP can work with it. Luckily, it is fairly easy to get the data in.

First, we need a source for our data, so we’ll have a page where a user can enter information, it can be html or php, makes no difference, but we send the data to a php page for handling.

So how about this simple page, input.html:

<html>

<body>

Enter your name and favourite colour from the list:

<form id="main" name="main" action="handler.php" method="get">

<input id="name" name="name" type="text">

<select name="colour">

<option value="blue">Blue</option>

<option value="red">Red</option>

<option value="yellow">Yellow</option>

<option value="green">Green</option>

</select>

<input type="submit">

</form>
</body>

</html>

This page gives instruction to enter your name, and then pick a favourite colour from a very short list. The form sets up the action attribute to be our php page that handles the input, and the method is GET.
Now let’s say our handler.php file was the following:

<?php

if(isset($_GET['name'])) {

$name = $_GET['name'];

}

if(isset($_POST['name'])) {

$name = $_POST['name'];

}

if(isset($_GET['colour'])) {

$colour = $_GET['colour'];

}

if(isset($_POST['colour'])) {

$colour = $_POST['colour'];

}

?>

<html>

<body style="background-color: <?php echo $colour; ?> ;">

Hello <?php echo $name; ?>, hope you like the view.

</body>

</html>
Going to input.html, entering a name and picking a colour and hitting submit, takes you to handler.php, greets the person of that name, and sets the background colour of the document to be the colour chosen. In old versions of PHP, you could just use the variable sent to the PHP file from the form as if it always existed. Now, you have to explicitly get them out of the superglobal arrays _GET and _POST. If the value of the variable is set (as named in the form) then set the variable content to be the value as received from outside PHP. You can name the new variable whatever you want, but for simplicity, I just use the name as it was before. Now you can use the data.

There are two ways to send the data to the PHP file, GET and POST. As you’ll notice in the handler.php after submitting the data, the variables and values are encoded into the URL. This allows you to bookmark a page given variables entered, and can be handy. POST passes data without this visible encoding, so if you don’t want or need the data to be bookmarked or seen, then use this. Also, GET has length limits due to it being so encoded, while POST’s limits are much higher. For a message board use POST, while for a search page, one would tend to use GET, for example.

Security Considerations: It is usually a good idea to parse any incoming data to ensure that the user isn’t trying to do something they shouldn’t. Like let’s say you take a filename as input, to delete it from a particular directory. So you take their input string, and append it to a path string, and then pass that whole path in to delete. If the user is nice and only inputs filenames like “test1.txt” then you’re fine, but if they input things like “../index.html” or something, they can get to other places and do naughty things. So usually it’s best to test input as best as you can, and then only pass them to functions that will limit the damage they can do if something goes awry.

Manipulating Input/Output Strings

stripslashes
 - When you type a name with special characters, say, a quote, it gets converted in the URL, and when output, is output literally, slashes intact. Use the stripslashes function to get rid of them. addslashes exists, and is usually used to add the escape character to special characters before inserting records into a database.

urlencode - urldecode
- You may want to fake GET data by having a link in the format seen when doing a GET request. urlencode encodes strings by changing specific non-alphanumeric characters to %hh where hh is the hexcode for the character. This alone may not be enough.
htmlentities

- encodes a string changing special characters into the HTML entity, & to & and such. PHP.net suggests encoding a string using urlencode and htmlentities in concert, in that order, to combat conflicts when the data ‘looks’ like an entity.

explode
- explode comes in handy a lot, it takes two parameters, first, the token on which to explode on, and second, the string which to explode. explode(“|”, “you|know|my|name|is|simon”); returns an array, indexed at 0, with the elements “you”, “know”, “my”, “name”, “is”, “simon”. You can’t specify multiple delimiters to explode on in the same explode call (I’m guessing the best way to do that is recursively explode each chunk on each new delimiter) but the delimiter itself is a string, thus it can be longer than a character.

Regular Expressions
I was debating whether or not to do anything on this at all, since I’d have to, for completeness, try to explain what they are, how powerful they are, and how to use them in PHP. Once you’ve got a grip on them, they are quite powerful, and are usable in different programs. Regular expressions themselves, as a concept, are in the realm of computer science in general, once you know them, all you’d need to know is in what way the other tools you’d use refer to them. The grep unix tool is all about regular expressions, so if you can effectively use that, you already know more than I do.

Regular Expressions are sequences of symbols used to match against words in a regular language. A word is made up of symbols from that language’s alphabet. Let’s say we wanted to deal with a small regular language, with only two letters in the alphabet, a and b. The language, we’ll say, is {a^n b^m, n > 0, m > 0} So one of the words is ab, others include aab, abb, aaabbb, and so on. Looking at it, we can say, in English, that the words in the alphabet are some number of a’s, followed by some number of b’s, with at least one of each.
So let’s say we want to come up with a regular expression that matches this language, so that in a larger document, we want to be able to identify words that are part of the language, and others that aren’t.

You’ve probably seen patterns before in a limited context, through DOS and the wildcards. * stood for (anything), and ? stood for (character). Regular expressions under PHP have similar symbols, but they are applied to a character, character class or a sub-expression.
I’ll get some of the basic symbols out of the way first:

/ - regular expressions usually start and end with this, to delimit the pattern, but you can use other characters, as long as they don’t appear in the middle of the expression.
\ - escape character, as usual

* - matches 0 or more of the preceding entity, so a* matches {empty}, a, aa, aaa and so on

+ - matches 1 or more of the preceding entity, so a+ matches a, aa, aaa and so on

. – (period), matches any single character, other than the newline character.

| - alternate branch, like an OR. (a+)|(b+) will match a, aa, aaa and so on, and b, bb, bbb and so on.

() – denote a sub-expression, so (ab)+ matches ab, abab, ababab and so on, while contrary to that, a+b+ matches aaaaaaaaaaaab, abbbbbbbbb, and others.

^ - matches the start of a line, so ^a matches a at the beginning of a line, but not the a in “stuff stuff a” where a is a separate word that would have been matched if the pattern was just a.

$ - matches the end of the line, together with ^ can be used to talk about single lines (or subjects), so ^(ab)+$ matches lines that consist only of ab, or abab, ababab, and so on.

[] – denotes a character class, which is a way of matching a single character in an easy way. Let’s say you want to match a word, that is 3 letters long, and consists of letters a to z. One way, is to do (a|b|c|e|f|….)(again)(again), ugly…. Or, we can use [a-z][a-z][a-z], as [] encapsulate and match a single character that falls in the range of letters specified. Further, [abc] matches a single character, a, b or c, and [^abc] matches any character that is not a, b or c.
The answer to the question that was posed above, was already answered in defining the symbols. We wanted some number of a’s followed by some number of b’s, with at least one of each. It would seem the pattern “/a+b+/” would be appropriate.
Here’s a little page that will let you play around with regular expressions:

<?php

if(isset($_GET['re']))

{

$re = $_GET['re'];

}

if(isset($_POST['re'])) {

$re = $_POST['re'];

}

if(isset($_GET['t']))

{

$t = $_GET['t'];

}

if(isset($_POST['t'])) {

$t = $_POST['t'];

}

?>

<html>

<body>

<form action="re.php" method="GET">

<label>Regular Expression </label><input type="text" id="re" name="re" size="20" />

<label>Text to Match </label><input type="text" id="t" name="t" size="t" />

<input type="submit"/>

</form>

<?php

if (isset($t) && isset($re))

{

$ret = @preg_grep(stripslashes($re), array(stripslashes($t)));

if ($ret[0] == $t)

{

 echo "match";

}

else

{

 echo "no match";

}

}

?>

</body>

</html>
It’s a page that submits back into itself (a standard trick), it takes two strings from the form, the regular expression, and the text to match. If there is any match at all (any submatch) then it says so, otherwise not. Note that this will also match aaaabbbc. If we wanted to stop at the line (so that ONLY the fully matching input would be accepted or rejected) then this pattern would work: “/^a+b+$/” which is just the previous pattern, with the added requirement that the a’s and b’s start at the beginning of the line, and end at the end of the line.
At this point, you may be wondering, what is the point of all this. Well, at this stage, the point should be clear. Regular Expressions are fairly powerful ways of matching strings that follow a pattern. You can use them to search for things, or to validate things. Like, here’s an easy one, Canadian Postal Codes, which, being Canadian, is of relevance to me. Postal Codes are a series of 6 characters, they alternate between letters and numbers, with an optional spaces in between. Here is the regular expression that would match them: “/[A-Z][0-9][A-Z](\s)*[0-9][A-Z][0-9]/”
Here, we’ve used another symbol I haven’t mentioned before, \s. It is a symbol representing whitespace. So (\s)* represents 0 or more whitespace characters. Here are some other usefule ones:

\s Whitespace character

\S Non-whitespace character

\d Decimal character

\D Non-decimal character

\w Word character (letters, digits, and underscore)

\W Non-Word characters

So we could rewrite the above, with a little trouble, but as we wanted to restrict the above to just upper case letters, it’s faster that way, but [0-9] could be rewritten as simply \d. [A-Z] would have to be rewritten as [^\W\d_], that is take underscore, digits, and non-word characters, and match everything except them, so match words characters except digits and underscore, or more simply, match letters. That would match upper and lower case, we can fix that too with other options. PHP.net has some good resources on all this.
Now, let’s try a few other things, how about finding file names that begin with f, end in a number, and have the extension htm or html. One possible regular expression would be /^((f.*[0-9]\.htm)|(f.*[0-9]\.html))$/

Another thing to note is that regular expressions are greedy and will match with as much as possible (actually, I believe in PHP, you can alter this behaviour). So if you had a regular expression /a.*b/ which matches with an a, any number of any other character, then finishes with a b, then given the string a1234b1234b it will match with the whole string, and not just the first part ending in the b in the middle.

Now we should talk about the limitation of regular expressions, which are tied into the limitations of regular languages. Let’s say we had a language defined as such: is {a^n b^n, n > 0} So some number of a’s, followed by the same number of b’s. What expression could we write? Well, you can’t write one, this is a type of counting problem, sure, any number of a’s followed by any number of b’s can be handled, but in this case, the regular expression needs to ‘remember’ how many a’s it has seen so far so when it gets to the b’s, it knows when to accept or reject. This memory is contrary to regular expressions being run by finite state machines, which are conceptual little machines, with a finite number of states, that move to one state to another when it sees a single symbol as the next bit of input. Never mind if you have no idea what I’m talking about, the point simply is that regular expressions to have limitations, but they are handy none the less.
Now that you have the basics, I suggest just looking up the preg_grep, preg_match and other preg_* functions at PHP.net, they are simple to use, and the real barrier in handling them is just writing the regular expressions to use with them. Anyway, I’m hardly an expert at any of this, but I get by.

Also, I suggest, that if you can get by using other functions, like exploding a string and looking at a specific piece, or searching a string for a particular substring, then use it. The Regular Expression engine, as powerful as it is, is considerably slower than other more generic functions, so unless you actually need the power of RE’s, use something else.

Postamble

This entry is a little shorter than usual, as the deadline sort of crept up on me. Next time, I think I’ll write about MySQL (basics of SQL) and how to use it in PHP.

