Learning how to optimize your game

By Jonathon Wallace

One of the things that most people do incorrectly is that they optimize the wrong part of their code. While it is true that every little bit will speed up your program, what you really want to do is to look for long loops or long complicated lines that could bring the speed way down.

The first thing that you need to get an initial frame rate, then write it down so that you have something to compare it to later. Sometimes what will seem like an optimization one minute, could in fact slow the computer down. Now, your game goes through a loop of subs (I hope). Have your program go through one loop, recording using the TIMER function how much each time each SUB takes. Now record that and figure out which SUB is taking up the most time. For most games it will be the one that draws the screen. Here is an example of what I mean from Inspiration:

Dynamic light – 8%

HUD – 2%

Drawguns – 4%

Raycast – 83%

Keyboard – 3%

Notice that most of the time is spent in the raycasting SUB. This means that if I optimize the HUD to move twice as fast I may only gain a half a frame per second, but if I do that for the raycaster, I almost double the frame rate. This means that most of the optimizations should be done here.

Here are some major optimizations that help a program out:

Use Integers whenever possible, they are 32 bit and one a 32 bit machine this works the best, they also don’t have to worry about finding a decimal point. FreeBasic automatically makes all variables integers, but in Qbasic you have to add DEFINT A-Z at the top of your program

Use lookup tables; if your program uses a lot of trigonometry then you will definitely want to have sine and cosine tables. This is essential for a 3D game, without them the framerates would trudge into the ground.
If you have two nested FOR loops and it is possible to do some calculations outside of one of them do it. This is what I mean:

FROM:
FOR a = 1 TO 10
 FOR x = 1 TO 10
 aa = sin(a) * a ^ 3 + x * 2
 NEXT
 NEXT

TO:
FOR a = 1 To 10
 suba = sin(a) * a ^ 3
 FOR x = 1 TO 10
 aa = suba + x * 2
 NEXT
 NEXT

If you have a small FOR loop, unravel it. It is a mistake by amateur programmers to try to save as much room as they can to make the code faster, this isn’t the case. Here is an example:

FOR x = 0 TO 5

PSET(x, 1), x

NEXT

After compilation it has little difference from:

IF x < 6 THEN PSET(x, 1), x

x = x + 1

IF x < 6 THEN PSET(x, 1), x

x = x + 1

IF x < 6 THEN PSET(x, 1), x

x = x + 1

IF x < 6 THEN PSET(x, 1), x

x = x + 1

IF x < 6 THEN PSET(x, 1), x

x = x + 1

IF x < 6 THEN PSET(x, 1), x

Instead, just use:

PSET(0, 1), 0

PSET(1, 1), 1

PSET(2, 1), 2

PSET(3, 1), 3

PSET(4, 1), 4

PSET(5, 1), 5

It is much easier and therefore faster for the computer to read.

Wherever possible do multiplication and division my multiples of 2. This allows FreeBasic (and Qbasic I think) to compile using the bit shifting commands which are three of four times faster than MUL and IDIV

Don’t do comparisons against zero, all the comparison does is returns a value, either 0 or 1, then the IF statement uses that as a Boolean. If it is equal to 0 then it is false, if it isn’t then the statement is true and it performs everything inside the nest.
i.e. IF a THEN …

Multiplication is five or six times faster than using powers. If you have something that uses small power functions, expand them into multiplication:

No good: A = b ^ 5

Good: A = b * b * b * b * b

Now go back to your original framerate and do some comparisons, see how much faster your program runs, and see if there are now any other problem SUBs
